Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2015, Volume 49, Issue 4, Pages 1–17
DOI: https://doi.org/10.4213/faa3219
(Mi faa3219)
 

This article is cited in 3 scientific papers (total in 3 papers)

Hirzebruch Functional Equation and Elliptic Functions of Level $d$

V. M. Buchstaber, I. V. Netay

Steklov Mathematical Institute of Russian Academy of Sciences
Full-text PDF (245 kB) Citations (3)
References:
Abstract: A function $f(x)$ of a complex variable $x$ regular in a neighborhood of $x=0$ and such that $f(0)=0$ and $f'(0)=1$ is said to be $n$-rigid if the sum of residues of the function $\prod_{i=0}^n1/f(x-x_i)$ does not depend on the choice of different points $x_0,\dots,x_n$ in a small neighborhood of $x=0$. The power series expansion of an $n$-rigid function is determined by a functional equation. We refer to this equation as the Hirzebruch $n$-equation. If $d$ is a divisor of $n+1$, then any elliptic function of level $d$ is $n$-rigid. A description of the manifold of all $2$-rigid functions has been obtained very recently. The main result of this work is a description of the manifold of all $3$-rigid functions.
Keywords: functional equation, Hirzebruch genus, elliptic function.
Funding agency Grant number
Russian Science Foundation 14-50-00005
Received: 05.10.2015
English version:
Functional Analysis and Its Applications, 2015, Volume 49, Issue 4, Pages 239–252
DOI: https://doi.org/10.1007/s10688-015-0113-0
Bibliographic databases:
Document Type: Article
UDC: 517.9+515.178.13+515.14
Language: Russian
Citation: V. M. Buchstaber, I. V. Netay, “Hirzebruch Functional Equation and Elliptic Functions of Level $d$”, Funktsional. Anal. i Prilozhen., 49:4 (2015), 1–17; Funct. Anal. Appl., 49:4 (2015), 239–252
Citation in format AMSBIB
\Bibitem{BucNet15}
\by V.~M.~Buchstaber, I.~V.~Netay
\paper Hirzebruch Functional Equation and Elliptic Functions of Level $d$
\jour Funktsional. Anal. i Prilozhen.
\yr 2015
\vol 49
\issue 4
\pages 1--17
\mathnet{http://mi.mathnet.ru/faa3219}
\crossref{https://doi.org/10.4213/faa3219}
\elib{https://elibrary.ru/item.asp?id=24849978}
\transl
\jour Funct. Anal. Appl.
\yr 2015
\vol 49
\issue 4
\pages 239--252
\crossref{https://doi.org/10.1007/s10688-015-0113-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366636400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84949938766}
Linking options:
  • https://www.mathnet.ru/eng/faa3219
  • https://doi.org/10.4213/faa3219
  • https://www.mathnet.ru/eng/faa/v49/i4/p1
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024