|
This article is cited in 1 scientific paper (total in 1 paper)
Brief communications
Module and Hochschild Cohomology of Certain Semigroup Algebras
A. Shirinkalama, A. Purabbasa, M. Aminibc a Faculty of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran
b School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
c Department of Mathematics, Tarbiat Modares University
Abstract:
We study the relation between the module and Hochschild cohomology groups of Banach algebras. We show that, for every commutative Banach $\mathcal{A}$-$\mathfrak{A}$-bimodule $X$ and every
$k\in\mathbb{N}$, the seminormed spaces $\mathcal{H}^{k}_{\mathfrak{A}}(\mathcal{A},X^*)$ and
$\mathcal{H}^k(\mathcal{A}/J,X^*)$ are isomorphic, where $J$ is a specific closed ideal of $\mathcal{A}$. As an example, we show that, for an inverse semigroup $S$ with the set of idempotents $E$, where $\ell^1(E)$ acts on $\ell^1(S)$ by multiplication on the right and trivially on the left, the first module cohomology $\mathcal{H}^1_{\ell^1(E)}(\ell^1(S),\ell^1(G_S)^{(2n+1)})$ is trivial for each $n\in\mathbb{N}$, where $G_S$ is the maximal group homomorphic image of $S$. Also, the second module cohomology $\mathcal{H}^2_{\ell^1(E)}(\ell^1(S),\ell^1(G_S)^{(2n+1)})$ is a Banach space.
Keywords:
module cohomology group, Hochschild cohomology group, inverse semigroup, semigroup algebra.
Received: 26.09.2014 Revised: 01.03.2015
Citation:
A. Shirinkalam, A. Purabbas, M. Amini, “Module and Hochschild Cohomology of Certain Semigroup Algebras”, Funktsional. Anal. i Prilozhen., 49:4 (2015), 90–94; Funct. Anal. Appl., 49:4 (2015), 315–318
Linking options:
https://www.mathnet.ru/eng/faa3218https://doi.org/10.4213/faa3218 https://www.mathnet.ru/eng/faa/v49/i4/p90
|
Statistics & downloads: |
Abstract page: | 270 | Full-text PDF : | 156 | References: | 42 | First page: | 16 |
|