Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2015, Volume 49, Issue 4, Pages 90–94
DOI: https://doi.org/10.4213/faa3218
(Mi faa3218)
 

This article is cited in 1 scientific paper (total in 1 paper)

Brief communications

Module and Hochschild Cohomology of Certain Semigroup Algebras

A. Shirinkalama, A. Purabbasa, M. Aminibc

a Faculty of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran
b School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
c Department of Mathematics, Tarbiat Modares University
Full-text PDF (167 kB) Citations (1)
References:
Abstract: We study the relation between the module and Hochschild cohomology groups of Banach algebras. We show that, for every commutative Banach $\mathcal{A}$-$\mathfrak{A}$-bimodule $X$ and every $k\in\mathbb{N}$, the seminormed spaces $\mathcal{H}^{k}_{\mathfrak{A}}(\mathcal{A},X^*)$ and $\mathcal{H}^k(\mathcal{A}/J,X^*)$ are isomorphic, where $J$ is a specific closed ideal of $\mathcal{A}$. As an example, we show that, for an inverse semigroup $S$ with the set of idempotents $E$, where $\ell^1(E)$ acts on $\ell^1(S)$ by multiplication on the right and trivially on the left, the first module cohomology $\mathcal{H}^1_{\ell^1(E)}(\ell^1(S),\ell^1(G_S)^{(2n+1)})$ is trivial for each $n\in\mathbb{N}$, where $G_S$ is the maximal group homomorphic image of $S$. Also, the second module cohomology $\mathcal{H}^2_{\ell^1(E)}(\ell^1(S),\ell^1(G_S)^{(2n+1)})$ is a Banach space.
Keywords: module cohomology group, Hochschild cohomology group, inverse semigroup, semigroup algebra.
Received: 26.09.2014
Revised: 01.03.2015
English version:
Functional Analysis and Its Applications, 2015, Volume 49, Issue 4, Pages 315–318
DOI: https://doi.org/10.1007/s10688-015-0122-z
Bibliographic databases:
Document Type: Article
UDC: 512.73
Language: Russian
Citation: A. Shirinkalam, A. Purabbas, M. Amini, “Module and Hochschild Cohomology of Certain Semigroup Algebras”, Funktsional. Anal. i Prilozhen., 49:4 (2015), 90–94; Funct. Anal. Appl., 49:4 (2015), 315–318
Citation in format AMSBIB
\Bibitem{ShiPurAmi15}
\by A.~Shirinkalam, A.~Purabbas, M.~Amini
\paper Module and Hochschild Cohomology of Certain Semigroup Algebras
\jour Funktsional. Anal. i Prilozhen.
\yr 2015
\vol 49
\issue 4
\pages 90--94
\mathnet{http://mi.mathnet.ru/faa3218}
\crossref{https://doi.org/10.4213/faa3218}
\elib{https://elibrary.ru/item.asp?id=24849987}
\transl
\jour Funct. Anal. Appl.
\yr 2015
\vol 49
\issue 4
\pages 315--318
\crossref{https://doi.org/10.1007/s10688-015-0122-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366636400010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84949937213}
Linking options:
  • https://www.mathnet.ru/eng/faa3218
  • https://doi.org/10.4213/faa3218
  • https://www.mathnet.ru/eng/faa/v49/i4/p90
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:269
    Full-text PDF :153
    References:41
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024