Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2015, Volume 49, Issue 3, Pages 60–65
DOI: https://doi.org/10.4213/faa3202
(Mi faa3202)
 

This article is cited in 1 scientific paper (total in 1 paper)

Brief communications

Remarks on Quantum Markov States

Z. I. Bezhaevaa, V. I. Oseledetsbc

a Moscow State Institute of Electronics and Mathematics — Higher School of Economics
b Financial University under the Government of the Russian Federation, Moscow
c Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (184 kB) Citations (1)
References:
Abstract: The definition of a quantum Markov state was given by Accardi in 1975. For the classical case, this definition gives hidden Markov measures, which, generally speaking, are not Markov measures. We can use a nonnegative transfer matrix to define a Markov measure. We use a positive semidefinite transfer matrix and select a class of quantum Markov states (in the sense of Accardi) on the inductive limit of the $C^*$-algebras $M_{d^n}$. An entangled quantum Markov state in the sense of Accardi and Fidaleo is a quantum Markov state in our sense. For the case where the transfer matrix has rank $1$, we calculate the eigenvalues and the eigenvectors of the density matrices determining the quantum Markov state. The sequence of von Neumann entropies of the density matrices of this state is bounded.
Keywords: $C^*$-algebra, state on $C^*$-algebra, density matrix, quantum Markov state, von Neumann entropy.
Received: 30.11.2014
English version:
Functional Analysis and Its Applications, 2015, Volume 49, Issue 3, Pages 205–209
DOI: https://doi.org/10.1007/s10688-015-0105-0
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: Z. I. Bezhaeva, V. I. Oseledets, “Remarks on Quantum Markov States”, Funktsional. Anal. i Prilozhen., 49:3 (2015), 60–65; Funct. Anal. Appl., 49:3 (2015), 205–209
Citation in format AMSBIB
\Bibitem{BezOse15}
\by Z.~I.~Bezhaeva, V.~I.~Oseledets
\paper Remarks on Quantum Markov States
\jour Funktsional. Anal. i Prilozhen.
\yr 2015
\vol 49
\issue 3
\pages 60--65
\mathnet{http://mi.mathnet.ru/faa3202}
\crossref{https://doi.org/10.4213/faa3202}
\elib{https://elibrary.ru/item.asp?id=24849967}
\transl
\jour Funct. Anal. Appl.
\yr 2015
\vol 49
\issue 3
\pages 205--209
\crossref{https://doi.org/10.1007/s10688-015-0105-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000361557200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84942092784}
Linking options:
  • https://www.mathnet.ru/eng/faa3202
  • https://doi.org/10.4213/faa3202
  • https://www.mathnet.ru/eng/faa/v49/i3/p60
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:341
    Full-text PDF :139
    References:51
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024