Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2015, Volume 49, Issue 2, Pages 79–81
DOI: https://doi.org/10.4213/faa3198
(Mi faa3198)
 

This article is cited in 1 scientific paper (total in 1 paper)

Brief communications

Spaces of quasi-invariance of product measures

L. M. Arutyunyan, E. D. Kosov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (106 kB) Citations (1)
References:
Abstract: Classical results of Shepp and Feldman give a criterion for a product measure which is a countable power of a measure on $\mathbb R$ with positive density to be equivalent to its shift by any vector in $\ell^2$. In this work a similar problem is studied for shifts of a measure by vectors in $\ell^q$ for $1\le q <2$.
Keywords: space of quasi-invariance, space of equivalent shifts, Shepp's theorem, product measure.
Funding agency Grant number
Russian Science Foundation 14-11-00196
This work was supported by RSF project No. 14-11-00196.
Received: 29.07.2014
English version:
Functional Analysis and Its Applications, 2015, Volume 49, Issue 2, Pages 142–144
DOI: https://doi.org/10.1007/s10688-015-0096-x
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: Russian
Citation: L. M. Arutyunyan, E. D. Kosov, “Spaces of quasi-invariance of product measures”, Funktsional. Anal. i Prilozhen., 49:2 (2015), 79–81; Funct. Anal. Appl., 49:2 (2015), 142–144
Citation in format AMSBIB
\Bibitem{AruKos15}
\by L.~M.~Arutyunyan, E.~D.~Kosov
\paper Spaces of quasi-invariance of product measures
\jour Funktsional. Anal. i Prilozhen.
\yr 2015
\vol 49
\issue 2
\pages 79--81
\mathnet{http://mi.mathnet.ru/faa3198}
\crossref{https://doi.org/10.4213/faa3198}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3374905}
\zmath{https://zbmath.org/?q=an:06486275}
\elib{https://elibrary.ru/item.asp?id=24849955}
\transl
\jour Funct. Anal. Appl.
\yr 2015
\vol 49
\issue 2
\pages 142--144
\crossref{https://doi.org/10.1007/s10688-015-0096-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000356443000008}
\elib{https://elibrary.ru/item.asp?id=23988976}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84935906921}
Linking options:
  • https://www.mathnet.ru/eng/faa3198
  • https://doi.org/10.4213/faa3198
  • https://www.mathnet.ru/eng/faa/v49/i2/p79
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024