Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2015, Volume 49, Issue 2, Pages 7–20
DOI: https://doi.org/10.4213/faa3195
(Mi faa3195)
 

This article is cited in 10 scientific papers (total in 11 papers)

Phase transition in the exit boundary problem for random walks on groups

A. M. Vershikabc, A. V. Malyutinb

a Saint Petersburg State University
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
c Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
References:
Abstract: We describe the full exit boundary of random walks on homogeneous trees, in particular, on free groups. This model exhibits a phase transition; namely, the family of Markov measures under study loses ergodicity as a parameter of the random walk changes.
The problem under consideration is a special case of the problem of describing the invariant (central) measures on branching graphs, which covers a number of problems in combinatorics, representation theory, and probability and was fully stated in a series of recent papers by the first author. On the other hand, in the context of the theory of Markov processes, close problems were discussed as early as 1960s by E. B. Dynkin.
Keywords: phase transition, Markov chain, Martin boundary, Poisson–Furstenberg boundary, Laplace operator, free group, homogeneous tree, Bratteli diagram, intrinsic metric, pascalization, central measure, de Finetti's theorem, dynamic Cayley graph, tail filtration.
Funding agency Grant number
Russian Science Foundation 14-11-00581
Supported by RSF grant 14-11-00581.
Received: 31.03.2015
English version:
Functional Analysis and Its Applications, 2015, Volume 49, Issue 2, Pages 86–96
DOI: https://doi.org/10.1007/s10688-015-0090-3
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. M. Vershik, A. V. Malyutin, “Phase transition in the exit boundary problem for random walks on groups”, Funktsional. Anal. i Prilozhen., 49:2 (2015), 7–20; Funct. Anal. Appl., 49:2 (2015), 86–96
Citation in format AMSBIB
\Bibitem{VerMal15}
\by A.~M.~Vershik, A.~V.~Malyutin
\paper Phase transition in the exit boundary problem for random walks on groups
\jour Funktsional. Anal. i Prilozhen.
\yr 2015
\vol 49
\issue 2
\pages 7--20
\mathnet{http://mi.mathnet.ru/faa3195}
\crossref{https://doi.org/10.4213/faa3195}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3374899}
\zmath{https://zbmath.org/?q=an:06486269}
\elib{https://elibrary.ru/item.asp?id=24849949}
\transl
\jour Funct. Anal. Appl.
\yr 2015
\vol 49
\issue 2
\pages 86--96
\crossref{https://doi.org/10.1007/s10688-015-0090-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000356443000002}
\elib{https://elibrary.ru/item.asp?id=23988452}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84935832995}
Linking options:
  • https://www.mathnet.ru/eng/faa3195
  • https://doi.org/10.4213/faa3195
  • https://www.mathnet.ru/eng/faa/v49/i2/p7
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:601
    Full-text PDF :193
    References:63
    First page:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024