Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2015, Volume 49, Issue 4, Pages 33–49
DOI: https://doi.org/10.4213/faa3191
(Mi faa3191)
 

This article is cited in 9 scientific papers (total in 9 papers)

Unique Determination of a System by a Part of the Monodromy Matrix

M. M. Malamud

Institute of Applied Mathematics and Mechanics, Donetsk
Full-text PDF (232 kB) Citations (9)
References:
Abstract: First-order ODE systems on a finite interval with nonsingular diagonal matrix B multiplying the derivative and integrable off-diagonal potential matrix Q are considered. It is proved that the matrix Q is uniquely determined by the monodromy matrix W(λ). In the case B=B, the minimum number of matrix entries of W(λ) sufficient to uniquely determine Q is found.
Keywords: ODE systems, canonical systems, monodromy matrix, inverse problems for ODE systems.
Received: 24.10.2014
English version:
Functional Analysis and Its Applications, 2015, Volume 49, Issue 4, Pages 264–278
DOI: https://doi.org/10.1007/s10688-015-0115-y
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: M. M. Malamud, “Unique Determination of a System by a Part of the Monodromy Matrix”, Funktsional. Anal. i Prilozhen., 49:4 (2015), 33–49; Funct. Anal. Appl., 49:4 (2015), 264–278
Citation in format AMSBIB
\Bibitem{Mal15}
\by M.~M.~Malamud
\paper Unique Determination of a System by a Part of the Monodromy Matrix
\jour Funktsional. Anal. i Prilozhen.
\yr 2015
\vol 49
\issue 4
\pages 33--49
\mathnet{http://mi.mathnet.ru/faa3191}
\crossref{https://doi.org/10.4213/faa3191}
\elib{https://elibrary.ru/item.asp?id=24849980}
\transl
\jour Funct. Anal. Appl.
\yr 2015
\vol 49
\issue 4
\pages 264--278
\crossref{https://doi.org/10.1007/s10688-015-0115-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366636400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84949956777}
Linking options:
  • https://www.mathnet.ru/eng/faa3191
  • https://doi.org/10.4213/faa3191
  • https://www.mathnet.ru/eng/faa/v49/i4/p33
  • This publication is cited in the following 9 articles:
    1. Vladimir A. Zolotarev, Lecture Notes in Mathematics, 2355, Analytic Methods of Spectral Representations of Non-Selfadjoint (Non-Unitary) Operators, 2025, 285  crossref
    2. Kai Wang, Ran Zhang, Chuan-Fu Yang, “Half inverse problem and interior inverse problem for the Dirac operators with discontinuity”, Anal.Math.Phys., 14:3 (2024)  crossref
    3. Tiezheng Li, Guangsheng Wei, “The local Borg–Marchenko uniqueness theorem for Dirac-type systems with locally smooth at the right endpoint rectangular potentials”, Ann. Funct. Anal., 15:2 (2024)  crossref
    4. Alexander Makin, “On the spectrum of non-self-adjoint Dirac operators with quasi-periodic boundary conditions”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 153:4 (2023), 1099  crossref
    5. Guangsheng Wei, Zhongfang Zhang, “The local Borg–Marchenko uniqueness theorem of matrix‐valued Dirac‐type operators for coefficients locally smooth at the right endpoint”, Mathematische Nachrichten, 296:8 (2023), 3711  crossref
    6. Tiezheng Li, Guangsheng Wei, “The local Borg-Marchenko uniqueness theorem for matrix-valued Schrödinger operators with locally smooth at the right endpoint potentials”, Applicable Analysis, 2023, 1  crossref
    7. Badanin A., Korotyaev E.L., “Asymptotics of Determinants of 4-Th Order Operators At Zero”, Math. Nachr., 293:2 (2020), 210–225  crossref  mathscinet  isi  scopus
    8. M. I. Ismailov, B. Yilmaz, “Inverse scattering on the half-line for generalized zs-akns system with general boundary conditions”, J. Nonlinear Math. Phys., 26:1 (2019), 155–167  crossref  mathscinet  zmath  isi  scopus
    9. V. A. Zolotarev, “Inverse spectral problem for the operators with non-local potential”, Math. Nachr., 292:3 (2019), 661–681  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:597
    Full-text PDF :179
    References:91
    First page:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025