Abstract:
First-order ODE systems on a finite interval with nonsingular diagonal matrix B multiplying the derivative
and integrable off-diagonal potential matrix Q are considered. It is proved that the matrix Q is uniquely determined by the monodromy matrix W(λ). In the case B=B∗, the minimum number of matrix
entries of W(λ) sufficient to uniquely determine Q is found.
Citation:
M. M. Malamud, “Unique Determination of a System by a Part of the Monodromy Matrix”, Funktsional. Anal. i Prilozhen., 49:4 (2015), 33–49; Funct. Anal. Appl., 49:4 (2015), 264–278
\Bibitem{Mal15}
\by M.~M.~Malamud
\paper Unique Determination of a System by a Part of the Monodromy Matrix
\jour Funktsional. Anal. i Prilozhen.
\yr 2015
\vol 49
\issue 4
\pages 33--49
\mathnet{http://mi.mathnet.ru/faa3191}
\crossref{https://doi.org/10.4213/faa3191}
\elib{https://elibrary.ru/item.asp?id=24849980}
\transl
\jour Funct. Anal. Appl.
\yr 2015
\vol 49
\issue 4
\pages 264--278
\crossref{https://doi.org/10.1007/s10688-015-0115-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366636400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84949956777}
Linking options:
https://www.mathnet.ru/eng/faa3191
https://doi.org/10.4213/faa3191
https://www.mathnet.ru/eng/faa/v49/i4/p33
This publication is cited in the following 9 articles:
Vladimir A. Zolotarev, Lecture Notes in Mathematics, 2355, Analytic Methods of Spectral Representations of Non-Selfadjoint (Non-Unitary) Operators, 2025, 285
Kai Wang, Ran Zhang, Chuan-Fu Yang, “Half inverse problem and interior inverse problem for the Dirac operators with discontinuity”, Anal.Math.Phys., 14:3 (2024)
Tiezheng Li, Guangsheng Wei, “The local Borg–Marchenko uniqueness theorem for Dirac-type systems with locally smooth at the right endpoint rectangular potentials”, Ann. Funct. Anal., 15:2 (2024)
Alexander Makin, “On the spectrum of non-self-adjoint Dirac operators with quasi-periodic boundary conditions”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 153:4 (2023), 1099
Guangsheng Wei, Zhongfang Zhang, “The local Borg–Marchenko uniqueness theorem of matrix‐valued Dirac‐type operators for coefficients locally smooth at the right endpoint”, Mathematische Nachrichten, 296:8 (2023), 3711
Tiezheng Li, Guangsheng Wei, “The local Borg-Marchenko uniqueness theorem for matrix-valued Schrödinger operators with locally smooth at the right endpoint potentials”, Applicable Analysis, 2023, 1
Badanin A., Korotyaev E.L., “Asymptotics of Determinants of 4-Th Order Operators At Zero”, Math. Nachr., 293:2 (2020), 210–225
M. I. Ismailov, B. Yilmaz, “Inverse scattering on the half-line for generalized zs-akns system with general boundary conditions”, J. Nonlinear Math. Phys., 26:1 (2019), 155–167
V. A. Zolotarev, “Inverse spectral problem for the operators with non-local potential”, Math. Nachr., 292:3 (2019), 661–681