Abstract:
We suggest a new method for describing invariant measures on Markov compacta and on path spaces of graphs and, thereby, for describing characters of certain groups and traces of $AF$-algebras. The method relies on properties of filtrations associated with a graph and, in particular, on the notion of a standard filtration. The main tool is an intrinsic metric introduced on simplices of measures; this is an iterated Kantorovich metric, and the central result is that the relative compactness in this metric guarantees the possibility of a constructive enumeration
of ergodic invariant measures. Applications include a number of classical theorems on invariant measures.
Keywords:
invariant and central measures, projective limit of simplices, filtrations, intrinsic metric, uniform compactness.
Citation:
A. M. Vershik, “The Problem of Describing Central Measures on the Path Spaces of Graded Graphs”, Funktsional. Anal. i Prilozhen., 48:4 (2014), 26–46; Funct. Anal. Appl., 48:4 (2014), 256–271
\Bibitem{Ver14}
\by A.~M.~Vershik
\paper The Problem of Describing Central Measures on the Path Spaces of Graded Graphs
\jour Funktsional. Anal. i Prilozhen.
\yr 2014
\vol 48
\issue 4
\pages 26--46
\mathnet{http://mi.mathnet.ru/faa3166}
\crossref{https://doi.org/10.4213/faa3166}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3372738}
\zmath{https://zbmath.org/?q=an:06434568}
\elib{https://elibrary.ru/item.asp?id=23421391}
\transl
\jour Funct. Anal. Appl.
\yr 2014
\vol 48
\issue 4
\pages 256--271
\crossref{https://doi.org/10.1007/s10688-014-0069-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000346483500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919423110}
Linking options:
https://www.mathnet.ru/eng/faa3166
https://doi.org/10.4213/faa3166
https://www.mathnet.ru/eng/faa/v48/i4/p26
This publication is cited in the following 24 articles:
Jevtic F.D., Timotijevic M., Zivaljevic R.T., “Polytopal Bier Spheres and Kantorovich-Rubinstein Polytopes of Weighted Cycles”, Discret. Comput. Geom., 65:4 (2021), 1275–1286
P. Nikitin, “The Absolute of the Comb Graph”, J Math Sci, 247:5 (2020), 723
K. Matveev, “Macdonald-positive specializations of the algebra of symmetric functions: proof of the Kerov conjecture”, Ann. Math., 189:1 (2019), 277–316
A. M. Vershik, “Three Theorems on the Uniqueness of the Plancherel Measure from Different Viewpoints”, Proc. Steklov Inst. Math., 305 (2019), 63–77
P. P. Nikitin, “The absolute of the comb graph”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. XXX, Zap. nauchn. sem. POMI, 481, POMI, SPb., 2019, 125–135
Stéphane Laurent, Lecture Notes in Mathematics, 2252, Séminaire de Probabilités L, 2019, 83
A. M. Vershik, A. V. Malyutin, “The Absolute of Finitely Generated Groups: II. The Laplacian and Degenerate Parts”, Funct. Anal. Appl., 52:3 (2018), 163–177
A. M. Vershik, A. V. Malyutin, “The absolute of finitely generated groups: I. Commutative (semi)groups”, Eur. J. Math., 4:4 (2018), 1476–1490
J. Math. Sci. (N. Y.), 240:5 (2019), 539–550
A. M. Vershik, A. V. Malyutin, “Asymptotic behavior of the number of geodesics in the discrete Heisenberg group”, J. Math. Sci. (N. Y.), 240:5 (2019), 525–534
Filip D. Jevtić, Marija Jelić, Rade T. Živaljević, “Cyclohedron and Kantorovich–Rubinstein Polytopes”, Arnold Math J., 4:1 (2018), 87
A. M. Vershik, “The theory of filtrations of subalgebras, standardness, and independence”, Russian Math. Surveys, 72:2 (2017), 257–333
A. M. Vershik, P. B. Zatitskii, “Universal adic approximation, invariant measures and scaled entropy”, Izv. Math., 81:4 (2017), 734–770
A. V. Kolesnikov, D. A. Zaev, “Optimal transportation of processes with infinite Kantorovich distance: independence and symmetry”, Kyoto J. Math., 57:2 (2017), 293–324
A. M. Vershik, A. V. Malyutin, “Infinite geodesics in the discrete Heisenberg group”, J. Math. Sci. (N. Y.), 232:2 (2018), 121–128
È. B. Vinberg, S. E. Kuznetsov, “Evgenii (Eugene) Borisovich Dynkin (obituary)”, Russian Math. Surveys, 71:2 (2016), 345–371
A. R. Minabutdinov, “Limiting curves for polynomial adic systems”, J. Math. Sci. (N. Y.), 224:2 (2017), 286–303
Vershik A.M., “Asymptotic theory of path spaces of graded graphs and its applications”, Jap. J. Math., 11:2 (2016), 151–218
Stéphane Laurent, Lecture Notes in Mathematics, 2168, Séminaire de Probabilités XLVIII, 2016, 445
A. M. Vershik, “Equipped graded graphs, projective limits of simplices, and their boundaries”, J. Math. Sci. (N. Y.), 209:6 (2015), 860–873