Loading [MathJax]/jax/output/SVG/config.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2014, Volume 48, Issue 4, Pages 26–46
DOI: https://doi.org/10.4213/faa3166
(Mi faa3166)
 

This article is cited in 23 scientific papers (total in 24 papers)

The Problem of Describing Central Measures on the Path Spaces of Graded Graphs

A. M. Vershikabc

a Saint Petersburg State University
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
c Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
References:
Abstract: We suggest a new method for describing invariant measures on Markov compacta and on path spaces of graphs and, thereby, for describing characters of certain groups and traces of $AF$-algebras. The method relies on properties of filtrations associated with a graph and, in particular, on the notion of a standard filtration. The main tool is an intrinsic metric introduced on simplices of measures; this is an iterated Kantorovich metric, and the central result is that the relative compactness in this metric guarantees the possibility of a constructive enumeration of ergodic invariant measures. Applications include a number of classical theorems on invariant measures.
Keywords: invariant and central measures, projective limit of simplices, filtrations, intrinsic metric, uniform compactness.
Funding agency Grant number
Russian Science Foundation 14-11-00581
Received: 08.08.2014
English version:
Functional Analysis and Its Applications, 2014, Volume 48, Issue 4, Pages 256–271
DOI: https://doi.org/10.1007/s10688-014-0069-5
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. M. Vershik, “The Problem of Describing Central Measures on the Path Spaces of Graded Graphs”, Funktsional. Anal. i Prilozhen., 48:4 (2014), 26–46; Funct. Anal. Appl., 48:4 (2014), 256–271
Citation in format AMSBIB
\Bibitem{Ver14}
\by A.~M.~Vershik
\paper The Problem of Describing Central Measures on the Path Spaces of Graded Graphs
\jour Funktsional. Anal. i Prilozhen.
\yr 2014
\vol 48
\issue 4
\pages 26--46
\mathnet{http://mi.mathnet.ru/faa3166}
\crossref{https://doi.org/10.4213/faa3166}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3372738}
\zmath{https://zbmath.org/?q=an:06434568}
\elib{https://elibrary.ru/item.asp?id=23421391}
\transl
\jour Funct. Anal. Appl.
\yr 2014
\vol 48
\issue 4
\pages 256--271
\crossref{https://doi.org/10.1007/s10688-014-0069-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000346483500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919423110}
Linking options:
  • https://www.mathnet.ru/eng/faa3166
  • https://doi.org/10.4213/faa3166
  • https://www.mathnet.ru/eng/faa/v48/i4/p26
  • This publication is cited in the following 24 articles:
    1. Jevtic F.D., Timotijevic M., Zivaljevic R.T., “Polytopal Bier Spheres and Kantorovich-Rubinstein Polytopes of Weighted Cycles”, Discret. Comput. Geom., 65:4 (2021), 1275–1286  crossref  mathscinet  isi  scopus
    2. P. Nikitin, “The Absolute of the Comb Graph”, J Math Sci, 247:5 (2020), 723  crossref
    3. K. Matveev, “Macdonald-positive specializations of the algebra of symmetric functions: proof of the Kerov conjecture”, Ann. Math., 189:1 (2019), 277–316  crossref  mathscinet  zmath  isi  scopus
    4. A. M. Vershik, “Three Theorems on the Uniqueness of the Plancherel Measure from Different Viewpoints”, Proc. Steklov Inst. Math., 305 (2019), 63–77  mathnet  crossref  crossref  mathscinet  isi  elib
    5. P. P. Nikitin, “The absolute of the comb graph”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. XXX, Zap. nauchn. sem. POMI, 481, POMI, SPb., 2019, 125–135  mathnet
    6. Stéphane Laurent, Lecture Notes in Mathematics, 2252, Séminaire de Probabilités L, 2019, 83  crossref
    7. A. M. Vershik, A. V. Malyutin, “The Absolute of Finitely Generated Groups: II. The Laplacian and Degenerate Parts”, Funct. Anal. Appl., 52:3 (2018), 163–177  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    8. A. M. Vershik, A. V. Malyutin, “The absolute of finitely generated groups: I. Commutative (semi)groups”, Eur. J. Math., 4:4 (2018), 1476–1490  crossref  mathscinet  isi  scopus
    9. J. Math. Sci. (N. Y.), 240:5 (2019), 539–550  mathnet  crossref
    10. A. M. Vershik, A. V. Malyutin, “Asymptotic behavior of the number of geodesics in the discrete Heisenberg group”, J. Math. Sci. (N. Y.), 240:5 (2019), 525–534  mathnet  crossref
    11. Filip D. Jevtić, Marija Jelić, Rade T. Živaljević, “Cyclohedron and Kantorovich–Rubinstein Polytopes”, Arnold Math J., 4:1 (2018), 87  crossref
    12. A. M. Vershik, “The theory of filtrations of subalgebras, standardness, and independence”, Russian Math. Surveys, 72:2 (2017), 257–333  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. A. M. Vershik, P. B. Zatitskii, “Universal adic approximation, invariant measures and scaled entropy”, Izv. Math., 81:4 (2017), 734–770  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    14. A. V. Kolesnikov, D. A. Zaev, “Optimal transportation of processes with infinite Kantorovich distance: independence and symmetry”, Kyoto J. Math., 57:2 (2017), 293–324  crossref  mathscinet  zmath  isi  scopus
    15. A. M. Vershik, A. V. Malyutin, “Infinite geodesics in the discrete Heisenberg group”, J. Math. Sci. (N. Y.), 232:2 (2018), 121–128  mathnet  crossref
    16. È. B. Vinberg, S. E. Kuznetsov, “Evgenii (Eugene) Borisovich Dynkin (obituary)”, Russian Math. Surveys, 71:2 (2016), 345–371  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    17. A. R. Minabutdinov, “Limiting curves for polynomial adic systems”, J. Math. Sci. (N. Y.), 224:2 (2017), 286–303  mathnet  crossref  mathscinet
    18. Vershik A.M., “Asymptotic theory of path spaces of graded graphs and its applications”, Jap. J. Math., 11:2 (2016), 151–218  crossref  mathscinet  zmath  isi  scopus
    19. Stéphane Laurent, Lecture Notes in Mathematics, 2168, Séminaire de Probabilités XLVIII, 2016, 445  crossref
    20. A. M. Vershik, “Equipped graded graphs, projective limits of simplices, and their boundaries”, J. Math. Sci. (N. Y.), 209:6 (2015), 860–873  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:702
    Full-text PDF :285
    References:125
    First page:45
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025