Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2014, Volume 48, Issue 4, Pages 88–94
DOI: https://doi.org/10.4213/faa3164
(Mi faa3164)
 

This article is cited in 5 scientific papers (total in 5 papers)

Brief communications

Homogenization of Elliptic Problems Depending on a Spectral Parameter

T. A. Suslina

St. Petersburg State University, Faculty of Physics
Full-text PDF (205 kB) Citations (5)
References:
Abstract: In $L_2({\mathbb R}^d;{\mathbb C}^n)$ we consider a strongly elliptic operator $A_\varepsilon$ given by the differential expression $b({\mathbf D})^*g({\mathbf x}/\varepsilon)b({\mathbf D})$, $\varepsilon >0$. Here $g({\mathbf x})$ is a bounded positive definite matrix-valued function assumed to be periodic with respect to some lattice and $b({\mathbf D})$ is a first-order differential operator. Let ${\mathcal O}\subset {\mathbb R}^d$ be a bounded domain with boundary of class $C^{1,1}$. We also study the operators $A_{D,\varepsilon}$ and $A_{N,\varepsilon}$ in $L_2({\mathcal O};{\mathbb C}^n)$ given by the same expression with Dirichlet or Neumann boundary conditions, respectively. We find approximations for the resolvents $(A_\varepsilon -\zeta I)^{-1}$, $(A_{D,\varepsilon} -\zeta I)^{-1}$, and $(A_{N,\varepsilon} -\zeta I)^{-1}$ in the operator ($L_2 \to L_2$)- and ($L_2 \to H^1$)-norms with error estimates depending on the parameters $\varepsilon$ and $\zeta$.
Keywords: homogenization of periodic differential operators, effective operator, corrector, operator error estimates.
Funding agency Grant number
Saint Petersburg State University 11.38.63.2012
Russian Foundation for Basic Research 14-01-00760
Received: 04.02.2014
English version:
Functional Analysis and Its Applications, 2014, Volume 48, Issue 4, Pages 309–313
DOI: https://doi.org/10.1007/s10688-014-0076-6
Bibliographic databases:
Document Type: Article
UDC: 517.956.2
Language: Russian
Citation: T. A. Suslina, “Homogenization of Elliptic Problems Depending on a Spectral Parameter”, Funktsional. Anal. i Prilozhen., 48:4 (2014), 88–94; Funct. Anal. Appl., 48:4 (2014), 309–313
Citation in format AMSBIB
\Bibitem{Sus14}
\by T.~A.~Suslina
\paper Homogenization of Elliptic Problems Depending on a Spectral Parameter
\jour Funktsional. Anal. i Prilozhen.
\yr 2014
\vol 48
\issue 4
\pages 88--94
\mathnet{http://mi.mathnet.ru/faa3164}
\crossref{https://doi.org/10.4213/faa3164}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3372745}
\zmath{https://zbmath.org/?q=an:06434575}
\elib{https://elibrary.ru/item.asp?id=23421398}
\transl
\jour Funct. Anal. Appl.
\yr 2014
\vol 48
\issue 4
\pages 309--313
\crossref{https://doi.org/10.1007/s10688-014-0076-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000346483500011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919449394}
Linking options:
  • https://www.mathnet.ru/eng/faa3164
  • https://doi.org/10.4213/faa3164
  • https://www.mathnet.ru/eng/faa/v48/i4/p88
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:505
    Full-text PDF :184
    References:108
    First page:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024