Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2014, Volume 48, Issue 2, Pages 39–50
DOI: https://doi.org/10.4213/faa3143
(Mi faa3143)
 

This article is cited in 2 scientific papers (total in 2 papers)

Limits of Integrable Hamiltonians on Semisimple Lie Algebras

È. B. Vinberg

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (169 kB) Citations (2)
References:
Abstract: It is proved that the limit of integrable Hamiltonians on a semisimple Lie algebra is an integrable Hamiltonian. Some limits of integrable Hamiltonians obtained by the argument shift method such that these limits themselves cannot be obtained by this method are constructed.
Keywords: Poisson algebra, Hamiltonian system, complete integrability, semisimple Lie algebra, transcendence degree, Gelfand–Kirillov dimension.
Funding agency Grant number
Russian Foundation for Basic Research 12-01-00704
Received: 05.01.2014
English version:
Functional Analysis and Its Applications, 2014, Volume 48, Issue 2, Pages 107–115
DOI: https://doi.org/10.1007/s10688-014-0051-2
Bibliographic databases:
Document Type: Article
UDC: 512.81
Language: Russian
Citation: È. B. Vinberg, “Limits of Integrable Hamiltonians on Semisimple Lie Algebras”, Funktsional. Anal. i Prilozhen., 48:2 (2014), 39–50; Funct. Anal. Appl., 48:2 (2014), 107–115
Citation in format AMSBIB
\Bibitem{Vin14}
\by \`E.~B.~Vinberg
\paper Limits of Integrable Hamiltonians on Semisimple Lie Algebras
\jour Funktsional. Anal. i Prilozhen.
\yr 2014
\vol 48
\issue 2
\pages 39--50
\mathnet{http://mi.mathnet.ru/faa3143}
\crossref{https://doi.org/10.4213/faa3143}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3288175}
\zmath{https://zbmath.org/?q=an:06410490}
\elib{https://elibrary.ru/item.asp?id=22834172}
\transl
\jour Funct. Anal. Appl.
\yr 2014
\vol 48
\issue 2
\pages 107--115
\crossref{https://doi.org/10.1007/s10688-014-0051-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000340070300002}
\elib{https://elibrary.ru/item.asp?id=24058311}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84902361062}
Linking options:
  • https://www.mathnet.ru/eng/faa3143
  • https://doi.org/10.4213/faa3143
  • https://www.mathnet.ru/eng/faa/v48/i2/p39
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024