Abstract:
We consider the degeneration of a simple Lie group which is a semidirect product of its Borel subgroup and a normal Abelian unipotent subgroup. We introduce a class of highest weight representations of the degenerate group of type A, generalizing the construction of PBW-graded representations of the classical group (PBW is an
abbreviation for “Poincaré–Birkhoff–Witt”). Following the classical construction of flag varieties, we consider the closures of orbits of the Abelian unipotent subgroup in projectivizations of the representations. We show that the degenerate flag varieties Fan and their desingularizations Rn can be obtained via this construction. We prove that the coordinate ring of Rn is isomorphic as a vector space to the direct sum of the duals of the highest weight representations of the degenerate group. At the end we state several conjectures on the structure of the highest weight representations of the degenerate group of type A.
Keywords:
Lie algebras, highest weight modules, PBW filtration, flag varieties.
Citation:
E. B. Feigin, “Degenerate Group of Type A: Representations and Flag Varieties”, Funktsional. Anal. i Prilozhen., 48:1 (2014), 73–88; Funct. Anal. Appl., 48:1 (2014), 59–71
\Bibitem{Fei14}
\by E.~B.~Feigin
\paper Degenerate Group of Type $A$: Representations and Flag Varieties
\jour Funktsional. Anal. i Prilozhen.
\yr 2014
\vol 48
\issue 1
\pages 73--88
\mathnet{http://mi.mathnet.ru/faa3138}
\crossref{https://doi.org/10.4213/faa3138}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3204679}
\zmath{https://zbmath.org/?q=an:06383405}
\elib{https://elibrary.ru/item.asp?id=21826396}
\transl
\jour Funct. Anal. Appl.
\yr 2014
\vol 48
\issue 1
\pages 59--71
\crossref{https://doi.org/10.1007/s10688-014-0046-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000333086600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896343613}
Linking options:
https://www.mathnet.ru/eng/faa3138
https://doi.org/10.4213/faa3138
https://www.mathnet.ru/eng/faa/v48/i1/p73
This publication is cited in the following 3 articles:
Evgeny Feigin, “Birational maps, PBW degenerate flags and poset polytopes”, Journal of Algebra, 2025
Mikhail Bershtein, Boris Feigin, Grigory Merzon, “Plane partitions with a “pit”: generating functions and representation theory”, Sel. Math. New Ser., 24:1 (2018), 21
E. B. Feigin, “PBW degeneration: algebra, geometry, and combinatorics”, J. Math. Sci. (N. Y.), 235:6 (2018), 685–713