Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2013, Volume 47, Issue 4, Pages 86–90
DOI: https://doi.org/10.4213/faa3131
(Mi faa3131)
 

This article is cited in 2 scientific papers (total in 2 papers)

Brief communications

Spectral Curves for Cauchy–Riemann Operators on Punctured Elliptic Curves

С. Bohlea, I. A. Taimanovb

a Mathematisches Institut, Universität Tübingen
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (148 kB) Citations (2)
References:
Abstract: We show that one can define a spectral curve for the Cauchy–Riemann operator on a punctured elliptic curve under appropriate boundary conditions. The algebraic curves thus obtained arise, for example, as irreducible components of the spectral curves of minimal tori with planar ends in $\mathbb{R}^3$. It turns out that these curves coincide with the spectral curves of certain elliptic KP solitons studied by Krichever.
Keywords: Cauchy–Riemann operator, spectral curve, elliptic soliton.
Received: 25.12.2012
English version:
Functional Analysis and Its Applications, 2013, Volume 47, Issue 4, Pages 319–322
DOI: https://doi.org/10.1007/s10688-013-0039-3
Bibliographic databases:
Document Type: Article
UDC: 517.984.5
Language: Russian
Citation: С. Bohle, I. A. Taimanov, “Spectral Curves for Cauchy–Riemann Operators on Punctured Elliptic Curves”, Funktsional. Anal. i Prilozhen., 47:4 (2013), 86–90; Funct. Anal. Appl., 47:4 (2013), 319–322
Citation in format AMSBIB
\Bibitem{BohTai13}
\by С.~Bohle, I.~A.~Taimanov
\paper Spectral Curves for Cauchy--Riemann Operators on Punctured Elliptic Curves
\jour Funktsional. Anal. i Prilozhen.
\yr 2013
\vol 47
\issue 4
\pages 86--90
\mathnet{http://mi.mathnet.ru/faa3131}
\crossref{https://doi.org/10.4213/faa3131}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3185127}
\zmath{https://zbmath.org/?q=an:1304.30064}
\elib{https://elibrary.ru/item.asp?id=21826388}
\transl
\jour Funct. Anal. Appl.
\yr 2013
\vol 47
\issue 4
\pages 319--322
\crossref{https://doi.org/10.1007/s10688-013-0039-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000328321500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84890544388}
Linking options:
  • https://www.mathnet.ru/eng/faa3131
  • https://doi.org/10.4213/faa3131
  • https://www.mathnet.ru/eng/faa/v47/i4/p86
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:459
    Full-text PDF :198
    References:64
    First page:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024