Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2013, Volume 47, Issue 4, Pages 18–29
DOI: https://doi.org/10.4213/faa3124
(Mi faa3124)
 

This article is cited in 16 scientific papers (total in 16 papers)

On the Neumann Problem for the Sturm–Liouville Equation with Cantor-Type Self-Similar Weight

A. A. Vladimirova, I. A. Sheipakb

a Dorodnitsyn Computing Centre of the Russian Academy of Sciences, Moscow
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The second and third boundary value problems for the Sturm–Liouville equation in which the weight function is the generalized derivative of a Cantor-type self-similar function are considered. The oscillation properties of the eigenfunctions of these problems are studied, and on the basis of this study, known asymptotics of their spectra are substantially refined. Namely, it is proved that the function $s$ in the well-known formula
$$ N(\lambda)=\lambda^D\cdot [s(\ln\lambda)+o(1)] $$
decomposes into the product of a decreasing exponential and a nondecreasing purely singular function (and, thereby, is not constant).
Keywords: Sturm–Liouville problem, self-similar weight, Neumann boundary conditions, third-type boundary conditions, spectral periodicity.
Received: 20.05.2011
English version:
Functional Analysis and Its Applications, 2013, Volume 47, Issue 4, Pages 261–270
DOI: https://doi.org/10.1007/s10688-013-0033-9
Bibliographic databases:
Document Type: Article
UDC: 517.984
Language: Russian
Citation: A. A. Vladimirov, I. A. Sheipak, “On the Neumann Problem for the Sturm–Liouville Equation with Cantor-Type Self-Similar Weight”, Funktsional. Anal. i Prilozhen., 47:4 (2013), 18–29; Funct. Anal. Appl., 47:4 (2013), 261–270
Citation in format AMSBIB
\Bibitem{VlaShe13}
\by A.~A.~Vladimirov, I.~A.~Sheipak
\paper On the Neumann Problem for the Sturm--Liouville Equation with Cantor-Type Self-Similar Weight
\jour Funktsional. Anal. i Prilozhen.
\yr 2013
\vol 47
\issue 4
\pages 18--29
\mathnet{http://mi.mathnet.ru/faa3124}
\crossref{https://doi.org/10.4213/faa3124}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3185121}
\zmath{https://zbmath.org/?q=an:06383392}
\elib{https://elibrary.ru/item.asp?id=21826382}
\transl
\jour Funct. Anal. Appl.
\yr 2013
\vol 47
\issue 4
\pages 261--270
\crossref{https://doi.org/10.1007/s10688-013-0033-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000328321500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84890463045}
Linking options:
  • https://www.mathnet.ru/eng/faa3124
  • https://doi.org/10.4213/faa3124
  • https://www.mathnet.ru/eng/faa/v47/i4/p18
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:739
    Full-text PDF :312
    References:89
    First page:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024