Abstract:
We prove that the number of limit cycles which bifurcate from a two-saddle loop of an analytic planar vector field $X_0$ under an arbitrary finite-parameter analytic deformation $X_\lambda$, $\lambda\in(\mathbb{R}^N,0)$, is uniformly bounded with respect to $\lambda$.
Citation:
L. Gavrilov, “On the Number of Limit Cycles Which Appear by Perturbation of Two-Saddle Cycles of Planar Vector Fields”, Funktsional. Anal. i Prilozhen., 47:3 (2013), 12–27; Funct. Anal. Appl., 47:3 (2013), 174–186
\Bibitem{Gav13}
\by L.~Gavrilov
\paper On the Number of Limit Cycles Which Appear by Perturbation of Two-Saddle Cycles of Planar Vector Fields
\jour Funktsional. Anal. i Prilozhen.
\yr 2013
\vol 47
\issue 3
\pages 12--27
\mathnet{http://mi.mathnet.ru/faa3118}
\crossref{https://doi.org/10.4213/faa3118}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3154836}
\zmath{https://zbmath.org/?q=an:06383383}
\elib{https://elibrary.ru/item.asp?id=20730697}
\transl
\jour Funct. Anal. Appl.
\yr 2013
\vol 47
\issue 3
\pages 174--186
\crossref{https://doi.org/10.1007/s10688-013-0024-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000324231800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84884363987}
Linking options:
https://www.mathnet.ru/eng/faa3118
https://doi.org/10.4213/faa3118
https://www.mathnet.ru/eng/faa/v47/i3/p12
This publication is cited in the following 5 articles:
Gavrilov L., Gargouri A., Ben Hamed B., “Special Cubic Perturbations of the Duffing Oscillator X ‘’ = X - X(3) Near the Eight-Loop”, Mediterr. J. Math., 18:6 (2021), 229
Geng W. Tian Yu., “Bifurcation of Limit Cycles Near Heteroclinic Loops in Near-Hamiltonian Systems”, Commun. Nonlinear Sci. Numer. Simul., 95 (2021), 105666
Gavrilov L., Iliev I.D., “Cubic Perturbations of Elliptic Hamiltonian Vector Fields of Degree Three”, J. Differ. Equ., 260:5 (2016), 3963–3990
Caubergh M., “Bifurcation of the Separatrix Skeleton in Some 1-Parameter Families of Planar Vector Fields”, J. Differ. Equ., 259:3 (2015), 989–1013
Gavrilov L., They I.D., “Perturbations of Quadratic Hamiltonian Two-Saddle Cycles”, Ann. Inst. Henri Poincare-Anal. Non Lineaire, 32:2 (2015), 307–324