Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2013, Volume 47, Issue 3, Pages 75–81
DOI: https://doi.org/10.4213/faa3113
(Mi faa3113)
 

This article is cited in 6 scientific papers (total in 6 papers)

The Dirichlet Ring and Unconditional Bases in $L_2[0,2\pi]$

A. Sowa

Department of Mathematics and Statistics, University of Saskatchewan, Canada
Full-text PDF (145 kB) Citations (6)
References:
Abstract: It is observed that the Dirichlet ring admits a representation in an infinite-dimensional matrix algebra. The resulting matrices are subsequently used in the construction of nonorthogonal Riesz bases in a separable Hilbert space. This framework enables custom design of a plethora of bases with interesting features. Remarkably, the representation of signals in any one of these bases is numerically implementable via fast algorithms.
Keywords: unconditional basis, Riesz basis, fast transform, Dirichlet series.
Received: 06.06.2011
English version:
Functional Analysis and Its Applications, 2013, Volume 47, Issue 3, Pages 227–232
DOI: https://doi.org/10.1007/s10688-013-0028-6
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: A. Sowa, “The Dirichlet Ring and Unconditional Bases in $L_2[0,2\pi]$”, Funktsional. Anal. i Prilozhen., 47:3 (2013), 75–81; Funct. Anal. Appl., 47:3 (2013), 227–232
Citation in format AMSBIB
\Bibitem{Sow13}
\by A.~Sowa
\paper The Dirichlet Ring and Unconditional Bases in $L_2[0,2\pi]$
\jour Funktsional. Anal. i Prilozhen.
\yr 2013
\vol 47
\issue 3
\pages 75--81
\mathnet{http://mi.mathnet.ru/faa3113}
\crossref{https://doi.org/10.4213/faa3113}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3154840}
\zmath{https://zbmath.org/?q=an:06383387}
\elib{https://elibrary.ru/item.asp?id=20730701}
\transl
\jour Funct. Anal. Appl.
\yr 2013
\vol 47
\issue 3
\pages 227--232
\crossref{https://doi.org/10.1007/s10688-013-0028-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000324231800006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84884371165}
Linking options:
  • https://www.mathnet.ru/eng/faa3113
  • https://doi.org/10.4213/faa3113
  • https://www.mathnet.ru/eng/faa/v47/i3/p75
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025