Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2013, Volume 47, Issue 2, Pages 55–67
DOI: https://doi.org/10.4213/faa3112
(Mi faa3112)
 

This article is cited in 1 scientific paper (total in 1 paper)

KMS States on $\mathfrak{S}_\infty$ Invariant with Respect to the Young Subgroups

N. I. Nessonov

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Khar'kov
Full-text PDF (241 kB) Citations (1)
References:
Abstract: Let $\mathfrak{S}_\mathbb{X}$ be the group of all finite permutations on a countable set $\mathbb {X}$, and let $\Pi=({}^1\mathbb{X},\dots,{}^n\mathbb{X})$ be a partition of $\mathbb{X}$ into disjoint subsets such that $|{}^i\mathbb{X}|=\infty$ for all $i$. We set $\mathfrak{S}_\Pi=\{s\in\mathfrak{S}_\mathbb{X}\mid s({}^i\mathbb{X})={}^i\mathbb{X}$ for all $i\}$. A positive definite function $\varphi$ on $\mathfrak{S}_\mathbb{X}$ is called a KMS state if the corresponding vector in the space of the GNS representation is cyclic for the commutant of this representation. A complete description of all factor KMS states which are invariant (central) with respect to the subgroup $\mathfrak{S}_\Pi$ is obtained.
Keywords: KMS state, indecomposable state, Young subgroup, factor representation, quasi-equivalent representations.
Received: 12.01.2011
English version:
Functional Analysis and Its Applications, 2013, Volume 47, Issue 2, Pages 127–137
DOI: https://doi.org/10.1007/s10688-013-0017-9
Bibliographic databases:
Document Type: Article
UDC: 517.986.4
Language: Russian
Citation: N. I. Nessonov, “KMS States on $\mathfrak{S}_\infty$ Invariant with Respect to the Young Subgroups”, Funktsional. Anal. i Prilozhen., 47:2 (2013), 55–67; Funct. Anal. Appl., 47:2 (2013), 127–137
Citation in format AMSBIB
\Bibitem{Nes13}
\by N.~I.~Nessonov
\paper KMS States on $\mathfrak{S}_\infty$ Invariant with Respect to the Young Subgroups
\jour Funktsional. Anal. i Prilozhen.
\yr 2013
\vol 47
\issue 2
\pages 55--67
\mathnet{http://mi.mathnet.ru/faa3112}
\crossref{https://doi.org/10.4213/faa3112}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3113869}
\zmath{https://zbmath.org/?q=an:06207380}
\elib{https://elibrary.ru/item.asp?id=20730690}
\transl
\jour Funct. Anal. Appl.
\yr 2013
\vol 47
\issue 2
\pages 127--137
\crossref{https://doi.org/10.1007/s10688-013-0017-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000321438400005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879811879}
Linking options:
  • https://www.mathnet.ru/eng/faa3112
  • https://doi.org/10.4213/faa3112
  • https://www.mathnet.ru/eng/faa/v47/i2/p55
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024