Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2013, Volume 47, Issue 2, Pages 84–89
DOI: https://doi.org/10.4213/faa3110
(Mi faa3110)
 

This article is cited in 9 scientific papers (total in 9 papers)

Brief communications

Continuity of Asymptotic Characteristics for Random Walks on Hyperbolic Groups

V. A. Kaimanovicha, A. G. Erschlerb

a University of Ottawa
b Paris-Sud University 11
Full-text PDF (173 kB) Citations (9)
References:
Abstract: We describe a new approach to proving the continuity of asymptotic entropy as a function of a transition measure under a finite first moment condition. It is based on using conditional random walks and amounts to checking uniformity in the strip criterion for the identification of the Poisson boundary. It is applicable to word hyperbolic groups and in several other situations when the Poisson boundary can be identified with an appropriate geometric boundary.
Keywords: random walk, asymptotic entropy, hyperbolic groups.
Received: 02.07.2012
English version:
Functional Analysis and Its Applications, 2013, Volume 47, Issue 2, Pages 152–156
DOI: https://doi.org/10.1007/s10688-013-0020-1
Bibliographic databases:
Document Type: Article
UDC: 519.217
Language: Russian
Citation: V. A. Kaimanovich, A. G. Erschler, “Continuity of Asymptotic Characteristics for Random Walks on Hyperbolic Groups”, Funktsional. Anal. i Prilozhen., 47:2 (2013), 84–89; Funct. Anal. Appl., 47:2 (2013), 152–156
Citation in format AMSBIB
\Bibitem{KaiErs13}
\by V.~A.~Kaimanovich, A.~G.~Erschler
\paper Continuity of Asymptotic Characteristics for Random Walks on Hyperbolic Groups
\jour Funktsional. Anal. i Prilozhen.
\yr 2013
\vol 47
\issue 2
\pages 84--89
\mathnet{http://mi.mathnet.ru/faa3110}
\crossref{https://doi.org/10.4213/faa3110}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3113872}
\zmath{https://zbmath.org/?q=an:06207383}
\elib{https://elibrary.ru/item.asp?id=20730693}
\transl
\jour Funct. Anal. Appl.
\yr 2013
\vol 47
\issue 2
\pages 152--156
\crossref{https://doi.org/10.1007/s10688-013-0020-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000321438400008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879815381}
Linking options:
  • https://www.mathnet.ru/eng/faa3110
  • https://doi.org/10.4213/faa3110
  • https://www.mathnet.ru/eng/faa/v47/i2/p84
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:576
    Full-text PDF :220
    References:66
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024