Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2013, Volume 47, Issue 3, Pages 90–96
DOI: https://doi.org/10.4213/faa3105
(Mi faa3105)
 

This article is cited in 1 scientific paper (total in 1 paper)

Brief communications

A Representation Theorem for Quantum Systems

A. A. Dosi

Northern Cyprus Campus, Middle East Technical University, Turkey
Full-text PDF (184 kB) Citations (1)
References:
Abstract: In this note representations of quantum systems are investigated. We propose a unital bipolar theorem for unital quantum cones, which plays a key role in proving a representation theorem for quantum systems. It turns out that each quantum system is identified with a certain quantum $L^{\infty}$-system up to a quantum order isomorphism.
Keywords: quantum systems, unital quantum cones, quantum $L^{\infty}$-algebra.
Received: 18.05.2011
English version:
Functional Analysis and Its Applications, 2013, Volume 47, Issue 3, Pages 241–245
DOI: https://doi.org/10.1007/s10688-013-0031-y
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: A. A. Dosi, “A Representation Theorem for Quantum Systems”, Funktsional. Anal. i Prilozhen., 47:3 (2013), 90–96; Funct. Anal. Appl., 47:3 (2013), 241–245
Citation in format AMSBIB
\Bibitem{Dos13}
\by A.~A.~Dosi
\paper A Representation Theorem for Quantum Systems
\jour Funktsional. Anal. i Prilozhen.
\yr 2013
\vol 47
\issue 3
\pages 90--96
\mathnet{http://mi.mathnet.ru/faa3105}
\crossref{https://doi.org/10.4213/faa3105}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3154843}
\zmath{https://zbmath.org/?q=an:1302.47101}
\elib{https://elibrary.ru/item.asp?id=20730704}
\transl
\jour Funct. Anal. Appl.
\yr 2013
\vol 47
\issue 3
\pages 241--245
\crossref{https://doi.org/10.1007/s10688-013-0031-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000324231800009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84884406485}
Linking options:
  • https://www.mathnet.ru/eng/faa3105
  • https://doi.org/10.4213/faa3105
  • https://www.mathnet.ru/eng/faa/v47/i3/p90
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025