Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2013, Volume 47, Issue 1, Pages 92–96
DOI: https://doi.org/10.4213/faa3104
(Mi faa3104)
 

This article is cited in 1 scientific paper (total in 1 paper)

Brief communications

The Local Rank of an Ergodic Symmetric Power $T^{\odot n}$ Does Not Exceed $n!\,n^{-n}$

V. V. Ryzhikov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (123 kB) Citations (1)
References:
Abstract: The infinity of the rank of ergodic symmetric powers of automorphisms of the Lebesgue space is proved, and sharp upper bounds for their local rank are found.
Keywords: ergodic transformation, local rank, symmetric tensor product.
Received: 28.09.2011
English version:
Functional Analysis and Its Applications, 2013, Volume 47, Issue 1, Pages 76–79
DOI: https://doi.org/10.1007/s10688-013-0011-2
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: V. V. Ryzhikov, “The Local Rank of an Ergodic Symmetric Power $T^{\odot n}$ Does Not Exceed $n!\,n^{-n}$”, Funktsional. Anal. i Prilozhen., 47:1 (2013), 92–96; Funct. Anal. Appl., 47:1 (2013), 76–79
Citation in format AMSBIB
\Bibitem{Ryz13}
\by V.~V.~Ryzhikov
\paper The Local Rank of an Ergodic Symmetric Power $T^{\odot n}$ Does Not Exceed $n!\,n^{-n}$
\jour Funktsional. Anal. i Prilozhen.
\yr 2013
\vol 47
\issue 1
\pages 92--96
\mathnet{http://mi.mathnet.ru/faa3104}
\crossref{https://doi.org/10.4213/faa3104}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3088077}
\zmath{https://zbmath.org/?q=an:06213814}
\elib{https://elibrary.ru/item.asp?id=20730685}
\transl
\jour Funct. Anal. Appl.
\yr 2013
\vol 47
\issue 1
\pages 76--79
\crossref{https://doi.org/10.1007/s10688-013-0011-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000316206200011}
\elib{https://elibrary.ru/item.asp?id=20432738}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874832201}
Linking options:
  • https://www.mathnet.ru/eng/faa3104
  • https://doi.org/10.4213/faa3104
  • https://www.mathnet.ru/eng/faa/v47/i1/p92
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024