Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2013, Volume 47, Issue 1, Pages 1–16
DOI: https://doi.org/10.4213/faa3096
(Mi faa3096)
 

This article is cited in 2 scientific papers (total in 3 papers)

Universal Symbols on Locally Compact Abelian Groups

E. A. Gorina, S. Norvidasb

a Moscow State Pedagogical University
b Institute of Mathematics and Informatics, Vilnius
Full-text PDF (222 kB) Citations (3)
References:
Abstract: From the viewpoint of elementary functional analysis, Bernstein inequalities are mainly sharp estimates for the norms of certain operators of convolution of entire functions bounded on the real line and having finite exponential type not exceeding a given one with (complex) Borel measures of finite total variation.
If we assume that the functions are defined on a locally compact Abelian group and use the uniform norms, then the generalized Bernstein spaces are parametrized by compact sets in the dual group $X$ and the symbols of the operators are the restrictions to compact sets in $X$ of functions locally coinciding with the Fourier transforms of measures. There exists symbols such that, in the case of uniform norms (and then, as it turns out, also in more general cases), the norm of the corresponding operator coincides with its spectral radius. The main result of the paper is a description of these (universal) symbols in terms of positive definite functions. Connected groups play a special role here.
Keywords: complex Banach algebra, locally compact Abelian group, Bernstein inequalities, positive definite function, spectrum.
Received: 29.08.2012
English version:
Functional Analysis and Its Applications, 2013, Volume 47, Issue 1, Pages 1–13
DOI: https://doi.org/10.1007/s10688-013-0001-4
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: E. A. Gorin, S. Norvidas, “Universal Symbols on Locally Compact Abelian Groups”, Funktsional. Anal. i Prilozhen., 47:1 (2013), 1–16; Funct. Anal. Appl., 47:1 (2013), 1–13
Citation in format AMSBIB
\Bibitem{GorNor13}
\by E.~A.~Gorin, S.~Norvidas
\paper Universal Symbols on Locally Compact Abelian Groups
\jour Funktsional. Anal. i Prilozhen.
\yr 2013
\vol 47
\issue 1
\pages 1--16
\mathnet{http://mi.mathnet.ru/faa3096}
\crossref{https://doi.org/10.4213/faa3096}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3087827}
\zmath{https://zbmath.org/?q=an:06213804}
\elib{https://elibrary.ru/item.asp?id=20730675}
\transl
\jour Funct. Anal. Appl.
\yr 2013
\vol 47
\issue 1
\pages 1--13
\crossref{https://doi.org/10.1007/s10688-013-0001-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000316206200001}
\elib{https://elibrary.ru/item.asp?id=20435097}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874889312}
Linking options:
  • https://www.mathnet.ru/eng/faa3096
  • https://doi.org/10.4213/faa3096
  • https://www.mathnet.ru/eng/faa/v47/i1/p1
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:474
    Full-text PDF :223
    References:57
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024