Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2013, Volume 47, Issue 1, Pages 47–61
DOI: https://doi.org/10.4213/faa3094
(Mi faa3094)
 

This article is cited in 15 scientific papers (total in 15 papers)

Intersections of Quadrics, Moment-Angle Manifolds, and Hamiltonian-Minimal Lagrangian Embeddings

A. E. Mironovab, T. E. Panovcde

a N. N. Bogoljubov Laboratory of Geometric Methods in Mathematical Physics
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
c M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
d A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow
e Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center), Moscow
References:
Abstract: We study the topology of Hamiltonian-minimal Lagrangian submanifolds $N$ in $\mathbb{C}^m$ constructed from intersections of real quadrics in a work of the first author. This construction is linked via an embedding criterion to the well-known Delzant construction of Hamiltonian toric manifolds. We establish the following topological properties of $N$: every $N$ embeds as a submanifold in the corresponding moment-angle manifold $\mathcal Z$, and every $N$ is the total space of two different fibrations, one over the torus $T^{m-n}$ with fiber a real moment-angle manifold $\mathcal{R}$ and the other over a quotient of $\mathcal{R}$ by a finite group with fiber a torus. These properties are used to produce new examples of Hamiltonian-minimal Lagrangian submanifolds with quite complicated topology.
Keywords: moment-angle manifold, simplicial fan, simple polytope.
Received: 22.04.2011
English version:
Functional Analysis and Its Applications, 2013, Volume 47, Issue 1, Pages 38–49
DOI: https://doi.org/10.1007/s10688-013-0005-0
Bibliographic databases:
Document Type: Article
UDC: 514.76+515.16
Language: Russian
Citation: A. E. Mironov, T. E. Panov, “Intersections of Quadrics, Moment-Angle Manifolds, and Hamiltonian-Minimal Lagrangian Embeddings”, Funktsional. Anal. i Prilozhen., 47:1 (2013), 47–61; Funct. Anal. Appl., 47:1 (2013), 38–49
Citation in format AMSBIB
\Bibitem{MirPan13}
\by A.~E.~Mironov, T.~E.~Panov
\paper Intersections of Quadrics, Moment-Angle Manifolds, and Hamiltonian-Minimal Lagrangian Embeddings
\jour Funktsional. Anal. i Prilozhen.
\yr 2013
\vol 47
\issue 1
\pages 47--61
\mathnet{http://mi.mathnet.ru/faa3094}
\crossref{https://doi.org/10.4213/faa3094}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3087831}
\zmath{https://zbmath.org/?q=an:06213808}
\elib{https://elibrary.ru/item.asp?id=20730679}
\transl
\jour Funct. Anal. Appl.
\yr 2013
\vol 47
\issue 1
\pages 38--49
\crossref{https://doi.org/10.1007/s10688-013-0005-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000316206200005}
\elib{https://elibrary.ru/item.asp?id=20434995}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874858498}
Linking options:
  • https://www.mathnet.ru/eng/faa3094
  • https://doi.org/10.4213/faa3094
  • https://www.mathnet.ru/eng/faa/v47/i1/p47
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:771
    Full-text PDF :289
    References:103
    First page:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024