Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2012, Volume 46, Issue 4, Pages 61–82
DOI: https://doi.org/10.4213/faa3089
(Mi faa3089)
 

This article is cited in 9 scientific papers (total in 9 papers)

Topological Radicals and Joint Spectral Radius

Yu. V. Turovskiia, V. S. Shulmanb

a Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, Baku
b Vologda State Technical University
Full-text PDF (286 kB) Citations (9)
References:
Abstract: It is shown that the joint spectral radius $\rho(M)$ of a precompact set $M$ of operators on a Banach space equals the maximum of two numbers, the joint spectral radius $\rho_{e}(M)$ of the image of $M$ in the Calkin algebra and the BW-radius $r(M)$. Similar results related to general normed algebras are also obtained. The proofs are based on the theory of topological radicals of normed algebras.
Keywords: joint spectral radius, the Berger–Wang formula, topological radical, invariant subspace.
Received: 20.11.2010
English version:
Functional Analysis and Its Applications, 2012, Volume 46, Issue 4, Pages 287–304
DOI: https://doi.org/10.1007/s10688-012-0036-y
Bibliographic databases:
Document Type: Article
UDC: 517.986.22
Language: Russian
Citation: Yu. V. Turovskii, V. S. Shulman, “Topological Radicals and Joint Spectral Radius”, Funktsional. Anal. i Prilozhen., 46:4 (2012), 61–82; Funct. Anal. Appl., 46:4 (2012), 287–304
Citation in format AMSBIB
\Bibitem{TurShu12}
\by Yu.~V.~Turovskii, V.~S.~Shulman
\paper Topological Radicals and Joint Spectral Radius
\jour Funktsional. Anal. i Prilozhen.
\yr 2012
\vol 46
\issue 4
\pages 61--82
\mathnet{http://mi.mathnet.ru/faa3089}
\crossref{https://doi.org/10.4213/faa3089}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3075096}
\zmath{https://zbmath.org/?q=an:06207372}
\elib{https://elibrary.ru/item.asp?id=20730671}
\transl
\jour Funct. Anal. Appl.
\yr 2012
\vol 46
\issue 4
\pages 287--304
\crossref{https://doi.org/10.1007/s10688-012-0036-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312498400005}
\elib{https://elibrary.ru/item.asp?id=20488132}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871320417}
Linking options:
  • https://www.mathnet.ru/eng/faa3089
  • https://doi.org/10.4213/faa3089
  • https://www.mathnet.ru/eng/faa/v46/i4/p61
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024