Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2012, Volume 46, Issue 4, Pages 14–30
DOI: https://doi.org/10.4213/faa3086
(Mi faa3086)
 

This article is cited in 18 scientific papers (total in 18 papers)

A Criterion for the Fundamental Principle to Hold for Invariant Subspaces on Bounded Convex Domains in the Complex Plane

O. A. Krivosheevaa, A. S. Krivosheevb

a Bashkir State University, Ufa
b Institute of Mathematics with Computing Centre of Ural Branch of the USSR Academy of Sciences
References:
Abstract: Let $D$ be a bounded convex domain of the complex plane. We study the problem of whether the fundamental principle holds for analytic function spaces on $D$ invariant with respect to the differentiation operator and admitting spectral synthesis. Earlier this problem was solved under a restriction on the multiplicities of the eigenvalues of the differentiation operator. In the present paper, we lift this restriction. Thus, we present a complete solution of the fundamental principle problem for arbitrary nontrivial closed invariant subspaces admitting spectral synthesis on arbitrary bounded convex domains.
Keywords: analytic function, convex domain, invariant subspace, fundamental principle.
Received: 24.12.2010
English version:
Functional Analysis and Its Applications, 2012, Volume 46, Issue 4, Pages 249–261
DOI: https://doi.org/10.1007/s10688-012-0033-1
Bibliographic databases:
Document Type: Article
UDC: 517.537.7
Language: Russian
Citation: O. A. Krivosheeva, A. S. Krivosheev, “A Criterion for the Fundamental Principle to Hold for Invariant Subspaces on Bounded Convex Domains in the Complex Plane”, Funktsional. Anal. i Prilozhen., 46:4 (2012), 14–30; Funct. Anal. Appl., 46:4 (2012), 249–261
Citation in format AMSBIB
\Bibitem{KriKri12}
\by O.~A.~Krivosheeva, A.~S.~Krivosheev
\paper A Criterion for the Fundamental Principle to Hold for Invariant Subspaces on Bounded Convex Domains in the Complex Plane
\jour Funktsional. Anal. i Prilozhen.
\yr 2012
\vol 46
\issue 4
\pages 14--30
\mathnet{http://mi.mathnet.ru/faa3086}
\crossref{https://doi.org/10.4213/faa3086}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3075093}
\zmath{https://zbmath.org/?q=an:06207369}
\elib{https://elibrary.ru/item.asp?id=20730668}
\transl
\jour Funct. Anal. Appl.
\yr 2012
\vol 46
\issue 4
\pages 249--261
\crossref{https://doi.org/10.1007/s10688-012-0033-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312498400002}
\elib{https://elibrary.ru/item.asp?id=20487930}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871288903}
Linking options:
  • https://www.mathnet.ru/eng/faa3086
  • https://doi.org/10.4213/faa3086
  • https://www.mathnet.ru/eng/faa/v46/i4/p14
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024