|
This article is cited in 11 scientific papers (total in 11 papers)
Brief communications
Operator Error Estimates in $L_2$ for Homogenization of an Elliptic Dirichlet Problem
T. A. Suslina St. Petersburg State University, Faculty of Physics
Abstract:
In a bounded domain ${\mathcal O} \subset {\mathbb R}^d$ with $C^{1,1}$ boundary a matrix elliptic second-order operator ${A}_{D,\varepsilon}$ with Dirichlet boundary condition is studied. The coefficients of this operator are periodic and depend on $\mathbf{x}/\varepsilon$, where $\varepsilon >0$ is a small parameter. The sharp-order error estimate $\|{A}_{D,\varepsilon}^{-1} - ({A}_D^0)^{-1} \|_{L_2 \to L_2} \le C \varepsilon$ is obtained. Here ${A}^0_D$ is an effective operator with constant coefficients and Dirichlet boundary condition.
Keywords:
periodic differential operators, homogenization, effective operator, operator error estimates.
Received: 16.01.2012
Citation:
T. A. Suslina, “Operator Error Estimates in $L_2$ for Homogenization of an Elliptic Dirichlet Problem”, Funktsional. Anal. i Prilozhen., 46:3 (2012), 91–96; Funct. Anal. Appl., 46:3 (2012), 234–238
Linking options:
https://www.mathnet.ru/eng/faa3083https://doi.org/10.4213/faa3083 https://www.mathnet.ru/eng/faa/v46/i3/p91
|
Statistics & downloads: |
Abstract page: | 501 | Full-text PDF : | 210 | References: | 121 | First page: | 11 |
|