Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2012, Volume 46, Issue 2, Pages 92–96
DOI: https://doi.org/10.4213/faa3071
(Mi faa3071)
 

This article is cited in 10 scientific papers (total in 10 papers)

Brief communications

Homogenization of the Elliptic Dirichlet Problem: Error Estimates in the $(L_2\to H^1)$-Norm

M. A. Pakhnin, T. A. Suslina

St. Petersburg State University, Faculty of Physics
References:
Abstract: Let $\mathcal{O} \subset \mathbb{R}^d$ be a bounded domain with boundary of class $C^{1,1}$. In $L_2(\mathcal{O};\mathbb{C}^n)$, consider a matrix elliptic second-order differential operator $A_{D,\varepsilon}$ with Dirichlet boundary condition. Here $\varepsilon >\nobreak0$ is a small parameter; the coefficients of $A_{D,\varepsilon}$ are periodic and depend on $\mathbf{x}/\varepsilon$. The operator $A_{D,\varepsilon}^{-1}$ in the norm of operators acting from $L_2(\mathcal{O};\mathbb{C}^n)$ to the Sobolev space $H^1(\mathcal{O};\mathbb{C}^n)$ is approximated with an error of order $\varepsilon^{1/2}$. The approximation is given by the sum of the operator $(A^0_D)^{-1}$ and a first-order corrector. Here $A^0_D$ is an effective operator with constant coefficients and Dirichlet boundary condition.
Keywords: homogenization of periodic differential operators, effective operator, corrector, operator error estimates.
Received: 18.01.2012
English version:
Functional Analysis and Its Applications, 2012, Volume 46, Issue 2, Pages 155–159
DOI: https://doi.org/10.1007/s10688-012-0022-4
Bibliographic databases:
Document Type: Article
UDC: 517.956.2
Language: Russian
Citation: M. A. Pakhnin, T. A. Suslina, “Homogenization of the Elliptic Dirichlet Problem: Error Estimates in the $(L_2\to H^1)$-Norm”, Funktsional. Anal. i Prilozhen., 46:2 (2012), 92–96; Funct. Anal. Appl., 46:2 (2012), 155–159
Citation in format AMSBIB
\Bibitem{PakSus12}
\by M.~A.~Pakhnin, T.~A.~Suslina
\paper Homogenization of the Elliptic Dirichlet Problem: Error Estimates in the $(L_2\to H^1)$-Norm
\jour Funktsional. Anal. i Prilozhen.
\yr 2012
\vol 46
\issue 2
\pages 92--96
\mathnet{http://mi.mathnet.ru/faa3071}
\crossref{https://doi.org/10.4213/faa3071}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2978064}
\zmath{https://zbmath.org/?q=an:1273.47078}
\elib{https://elibrary.ru/item.asp?id=20730657}
\transl
\jour Funct. Anal. Appl.
\yr 2012
\vol 46
\issue 2
\pages 155--159
\crossref{https://doi.org/10.1007/s10688-012-0022-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305412000009}
\elib{https://elibrary.ru/item.asp?id=17992053}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862518395}
Linking options:
  • https://www.mathnet.ru/eng/faa3071
  • https://doi.org/10.4213/faa3071
  • https://www.mathnet.ru/eng/faa/v46/i2/p92
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:554
    Full-text PDF :193
    References:81
    First page:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024