|
This article is cited in 10 scientific papers (total in 10 papers)
Brief communications
Homogenization of the Elliptic Dirichlet Problem: Error Estimates in the $(L_2\to H^1)$-Norm
M. A. Pakhnin, T. A. Suslina St. Petersburg State University, Faculty of Physics
Abstract:
Let $\mathcal{O} \subset \mathbb{R}^d$ be a bounded domain with boundary of class $C^{1,1}$. In $L_2(\mathcal{O};\mathbb{C}^n)$, consider a matrix elliptic second-order differential operator $A_{D,\varepsilon}$ with Dirichlet boundary condition. Here $\varepsilon >\nobreak0$ is a small parameter; the coefficients of $A_{D,\varepsilon}$ are periodic and depend on $\mathbf{x}/\varepsilon$. The operator $A_{D,\varepsilon}^{-1}$ in the norm of operators acting from $L_2(\mathcal{O};\mathbb{C}^n)$ to the Sobolev space $H^1(\mathcal{O};\mathbb{C}^n)$ is approximated with an error of order $\varepsilon^{1/2}$. The approximation is given by the sum of the operator $(A^0_D)^{-1}$ and a first-order corrector. Here $A^0_D$ is an effective operator with constant coefficients and Dirichlet boundary condition.
Keywords:
homogenization of periodic differential operators, effective operator, corrector, operator error estimates.
Received: 18.01.2012
Citation:
M. A. Pakhnin, T. A. Suslina, “Homogenization of the Elliptic Dirichlet Problem: Error Estimates in the $(L_2\to H^1)$-Norm”, Funktsional. Anal. i Prilozhen., 46:2 (2012), 92–96; Funct. Anal. Appl., 46:2 (2012), 155–159
Linking options:
https://www.mathnet.ru/eng/faa3071https://doi.org/10.4213/faa3071 https://www.mathnet.ru/eng/faa/v46/i2/p92
|
Statistics & downloads: |
Abstract page: | 554 | Full-text PDF : | 193 | References: | 81 | First page: | 31 |
|