Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2000, Volume 34, Issue 3, Pages 1–16
DOI: https://doi.org/10.4213/faa307
(Mi faa307)
 

This article is cited in 45 scientific papers (total in 47 papers)

Uniformization of Jacobi Varieties of Trigonal Curves and Nonlinear Differential Equations

V. M. Buchstabera, D. V. Leikinb, V. Z. Ènol'skiib

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Institute of Magnetism, National Academy of Sciences of Ukraine
References:
Abstract: We obtain an explicit realization of the Jacobi and Kummer varieties for trigonal curves of genus $g$ ($\gcd(g,3)=1$) of the form
$$ y^3=x^{g+1}+\sum_{\alpha,\beta}\lambda_{3\alpha +(g+1)\beta}x^{\alpha}y^{\beta},\qquad 0\le3\alpha+(g+1)\beta <3g+3, $$
as algebraic subvarieties in $\mathbb{C}^{4g+\delta}$, where $\delta=2(g-3[g/3])$, and in $\mathbb{C}^{g(g+1)/2}$. We uniformize these varieties with the help of $\wp$-functions of several variables defined on the universal space of Jacobians of such curves. By way of application, we obtain a system of nonlinear partial differential equations integrable in trigonal $\wp$-functions. This system in particular contains the oussinesq equation.
Received: 22.05.2000
English version:
Functional Analysis and Its Applications, 2000, Volume 34, Issue 3, Pages 159–171
DOI: https://doi.org/10.1007/BF02482405
Bibliographic databases:
Document Type: Article
UDC: 512.742+517.957
Language: Russian
Citation: V. M. Buchstaber, D. V. Leikin, V. Z. Ènol'skii, “Uniformization of Jacobi Varieties of Trigonal Curves and Nonlinear Differential Equations”, Funktsional. Anal. i Prilozhen., 34:3 (2000), 1–16; Funct. Anal. Appl., 34:3 (2000), 159–171
Citation in format AMSBIB
\Bibitem{BucLeiEno00}
\by V.~M.~Buchstaber, D.~V.~Leikin, V.~Z.~\`Enol'skii
\paper Uniformization of Jacobi Varieties of Trigonal Curves and Nonlinear Differential Equations
\jour Funktsional. Anal. i Prilozhen.
\yr 2000
\vol 34
\issue 3
\pages 1--16
\mathnet{http://mi.mathnet.ru/faa307}
\crossref{https://doi.org/10.4213/faa307}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1802314}
\zmath{https://zbmath.org/?q=an:0978.58012}
\transl
\jour Funct. Anal. Appl.
\yr 2000
\vol 34
\issue 3
\pages 159--171
\crossref{https://doi.org/10.1007/BF02482405}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000165392400001}
Linking options:
  • https://www.mathnet.ru/eng/faa307
  • https://doi.org/10.4213/faa307
  • https://www.mathnet.ru/eng/faa/v34/i3/p1
  • This publication is cited in the following 47 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024