Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2012, Volume 46, Issue 1, Pages 13–30
DOI: https://doi.org/10.4213/faa3064
(Mi faa3064)
 

This article is cited in 3 scientific papers (total in 3 papers)

Rotation Numbers and Moduli of Elliptic Curves

N. B. Goncharukab

a Independent University of Moscow
b M. V. Lomonosov Moscow State University
Full-text PDF (331 kB) Citations (3)
References:
Abstract: Given a circle diffeomorphism $f$, we can construct a map taking each real number $a$ to the rotation number of the diffeomorphism $f+a$. In 1978, V. I. Arnold suggested a complex analog To this map. Given a complex number $z$ with $\operatorname{Im}z>0$, Arnold used the map $f+z$ to construct an elliptic curve. The moduli map takes every number $z$ to the modulus $\mu(z)$ of this elliptic curve.
In this article, we investigate the limit behaviour of the map $\mu$ in neighborhoods of the real intervals on which the rotation number of the diffeomorphism $f+a$ is rational. We show that the map $\mu$ extends analytically to any interior point of such an interval, excluding some finite set of exceptional points. Near exceptional points and the endpoints of the interval, the values of the function $\mu$ tend to the rotation number of the map $f+a$.
The union of the images of such intervals under the map $\mu$ is a fractal set in the upper half-plane. This fractal set is a complex analog to Arnold tongues.
Keywords: circle diffeomorphism, rotation number, elliptic curve, quasiconformal map.
Received: 09.12.2010
English version:
Functional Analysis and Its Applications, 2012, Volume 46, Issue 1, Pages 11–25
DOI: https://doi.org/10.1007/s10688-012-0002-8
Bibliographic databases:
Document Type: Article
UDC: 517.938
Language: Russian
Citation: N. B. Goncharuk, “Rotation Numbers and Moduli of Elliptic Curves”, Funktsional. Anal. i Prilozhen., 46:1 (2012), 13–30; Funct. Anal. Appl., 46:1 (2012), 11–25
Citation in format AMSBIB
\Bibitem{Gon12}
\by N.~B.~Goncharuk
\paper Rotation Numbers and Moduli of Elliptic Curves
\jour Funktsional. Anal. i Prilozhen.
\yr 2012
\vol 46
\issue 1
\pages 13--30
\mathnet{http://mi.mathnet.ru/faa3064}
\crossref{https://doi.org/10.4213/faa3064}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2961737}
\zmath{https://zbmath.org/?q=an:06207338}
\elib{https://elibrary.ru/item.asp?id=20730638}
\transl
\jour Funct. Anal. Appl.
\yr 2012
\vol 46
\issue 1
\pages 11--25
\crossref{https://doi.org/10.1007/s10688-012-0002-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000301599600002}
\elib{https://elibrary.ru/item.asp?id=17980506}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84858436958}
Linking options:
  • https://www.mathnet.ru/eng/faa3064
  • https://doi.org/10.4213/faa3064
  • https://www.mathnet.ru/eng/faa/v46/i1/p13
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:826
    Full-text PDF :373
    References:76
    First page:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024