Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2012, Volume 46, Issue 1, Pages 31–38
DOI: https://doi.org/10.4213/faa3052
(Mi faa3052)
 

This article is cited in 3 scientific papers (total in 4 papers)

Relative Version of the Titchmarsh Convolution Theorem

E. A. Gorina, D. V. Treschevb

a Moscow State (V. I. Lenin) Pedagogical Institute
b Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF (190 kB) Citations (4)
References:
Abstract: We consider the algebra $C_u=C_u(\mathbb{R})$ of uniformly continuous bounded complex functions on the real line $\mathbb{R}$ with pointwise operations and $\sup$-norm. Let $I$ be a closed ideal in $C_u$ invariant with respect to translations, and let $\operatorname{ah}_I(f)$ denote the minimal real number (if it exists) satisfying the following condition. If $\lambda>\operatorname{ah}_I(f)$, then $(\hat f - \hat g)|_V=0$ for some $g\in I$, where $V$ is a neighborhood of the point $\lambda$. The classical Titchmarsh convolution theorem is equivalent to the equality $\operatorname{ah}_I(f_1\cdot f_2)=\operatorname{ah}_I(f_1)+\operatorname{ah}_I(f_2)$, where $I = \{0\}$. We show that, for ideals $I$ of general form, this equality does not generally hold, but $\operatorname{ah}_I(f^n)=n\cdot\operatorname{ah}_I(f)$ holds for any $I$. We present many nontrivial ideals for which the general form of the Titchmarsh theorem is true.
Keywords: Titchmarsh's convolution theorem, estimation of entire functions, Banach algebra.
Received: 28.03.2011
English version:
Functional Analysis and Its Applications, 2012, Volume 46, Issue 1, Pages 26–32
DOI: https://doi.org/10.1007/s10688-012-0003-7
Bibliographic databases:
Document Type: Article
UDC: 517.987+517.51+517.53
Language: Russian
Citation: E. A. Gorin, D. V. Treschev, “Relative Version of the Titchmarsh Convolution Theorem”, Funktsional. Anal. i Prilozhen., 46:1 (2012), 31–38; Funct. Anal. Appl., 46:1 (2012), 26–32
Citation in format AMSBIB
\Bibitem{GorTre12}
\by E.~A.~Gorin, D.~V.~Treschev
\paper Relative Version of the Titchmarsh Convolution Theorem
\jour Funktsional. Anal. i Prilozhen.
\yr 2012
\vol 46
\issue 1
\pages 31--38
\mathnet{http://mi.mathnet.ru/faa3052}
\crossref{https://doi.org/10.4213/faa3052}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2961738}
\zmath{https://zbmath.org/?q=an:06207339}
\elib{https://elibrary.ru/item.asp?id=20730639}
\transl
\jour Funct. Anal. Appl.
\yr 2012
\vol 46
\issue 1
\pages 26--32
\crossref{https://doi.org/10.1007/s10688-012-0003-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000301599600003}
\elib{https://elibrary.ru/item.asp?id=17980385}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84858376028}
Linking options:
  • https://www.mathnet.ru/eng/faa3052
  • https://doi.org/10.4213/faa3052
  • https://www.mathnet.ru/eng/faa/v46/i1/p31
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:804
    Full-text PDF :354
    References:114
    First page:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024