|
This article is cited in 6 scientific papers (total in 6 papers)
Cohomology of a flag variety as a Bethe algebra
A. N. Varchenkoa, R. Rimányia, V. O. Tarasovbc, V. V. Schechtmand a Department of Mathematics, University of North Carolina at Chapel Hill, USA
b Department of Mathematical Sciences, Indiana University–Purdue University Indianapolis, Indianapolis, USA
c St. Petersburg Department of Steklov Institute of Mathematics, St. Petersburg, Russia
d Institute de Mathématique de Toulouse, Toulouse, France
Abstract:
We interpret the equivariant cohomology $H^*_{GL_n}(\mathcal{F}_{\boldsymbol\lambda},mathbb{C})$ of a partial flag variety $\mathcal{F}_{\boldsymbol\lambda}$ parametrizing chains of subspaces $0=F_0\subset F_1\subset\dots\subset F_N=\mathbb{C}^n$, $\dim F_i/F_{i-1}=\lambda_i$, as the Bethe algebra $\mathcal{B}^\infty(\mathcal{V}^\pm_{\boldsymbol\lambda})$ of the $\mathfrak{gl}_N$-weight subspace $\mathcal{V}^\pm_{\boldsymbol\lambda}$ of a $\mathfrak{gl}_N[t]$-module $\mathcal{V}^\pm$.
Keywords:
Gaudin model, Bethe algebra, cohomology of flag varieties.
Received: 22.03.2011
Citation:
A. N. Varchenko, R. Rimányi, V. O. Tarasov, V. V. Schechtman, “Cohomology of a flag variety as a Bethe algebra”, Funktsional. Anal. i Prilozhen., 45:4 (2011), 16–31; Funct. Anal. Appl., 45:4 (2011), 252–264
Linking options:
https://www.mathnet.ru/eng/faa3050https://doi.org/10.4213/faa3050 https://www.mathnet.ru/eng/faa/v45/i4/p16
|
Statistics & downloads: |
Abstract page: | 593 | Full-text PDF : | 230 | References: | 77 | First page: | 23 |
|