Processing math: 100%
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2011, Volume 45, Issue 2, Pages 1–22
DOI: https://doi.org/10.4213/faa3039
(Mi faa3039)
 

This article is cited in 17 scientific papers (total in 17 papers)

Mixed Problems in a Lipschitz Domain for Strongly Elliptic Second-Order Systems

M. S. Agranovich

Moscow Institute of Electronics and Mathematics
References:
Abstract: We consider mixed problems for strongly elliptic second-order systems in a bounded domain with Lipschitz boundary in the space Rn. For such problems, equivalent equations on the boundary in the simplest L2-spaces Hs of Sobolev type are derived, which permits one to represent the solutions via surface potentials. We prove a result on the regularity of solutions in the slightly more general spaces Hsp of Bessel potentials and Besov spaces Bsp. Problems with spectral parameter in the system or in the condition on a part of the boundary are considered, and the spectral properties of the corresponding operators, including the eigenvalue asymptotics, are discussed.
Keywords: strongly elliptic system, mixed problem, potential type operator, spectral problem, eigenvalue asymptotics.
Received: 16.12.2010
English version:
Functional Analysis and Its Applications, 2011, Volume 45, Issue 2, Pages 81–98
DOI: https://doi.org/10.1007/s10688-011-0011-z
Bibliographic databases:
Document Type: Article
UDC: 517.98+517.95
Language: Russian
Citation: M. S. Agranovich, “Mixed Problems in a Lipschitz Domain for Strongly Elliptic Second-Order Systems”, Funktsional. Anal. i Prilozhen., 45:2 (2011), 1–22; Funct. Anal. Appl., 45:2 (2011), 81–98
Citation in format AMSBIB
\Bibitem{Agr11}
\by M.~S.~Agranovich
\paper Mixed Problems in a Lipschitz Domain for Strongly Elliptic Second-Order Systems
\jour Funktsional. Anal. i Prilozhen.
\yr 2011
\vol 45
\issue 2
\pages 1--22
\mathnet{http://mi.mathnet.ru/faa3039}
\crossref{https://doi.org/10.4213/faa3039}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2848775}
\zmath{https://zbmath.org/?q=an:1271.35024}
\transl
\jour Funct. Anal. Appl.
\yr 2011
\vol 45
\issue 2
\pages 81--98
\crossref{https://doi.org/10.1007/s10688-011-0011-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000298226000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79958704996}
Linking options:
  • https://www.mathnet.ru/eng/faa3039
  • https://doi.org/10.4213/faa3039
  • https://www.mathnet.ru/eng/faa/v45/i2/p1
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:796
    Full-text PDF :275
    References:106
    First page:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025