|
This article is cited in 8 scientific papers (total in 8 papers)
Brief communications
Geometry of Cesàro Function Spaces
S. V. Astashkina, L. Maligrandab a Samara State University
b Luleå University of Technology
Abstract:
Geometric properties of Cesàro function spaces $\operatorname{Ces}_{p}(I)$, where $I=[0,\infty)$ or
$I=[0,1]$, are investigated. In both cases, a description of their dual spaces for $1<p<\infty$ is
given. We find the type and the cotype of Cesàro spaces and present a complete characterization
of the spaces $l^q$ that have isomorphic copies in $\operatorname{Ces}_{p}[0,1]$ ($1\le p<\infty$).
Keywords:
Cesàro space, Köthe dual space, dual space, $q$-concave Banach space, type and cotype of a Banach space, Dunford–Pettis property.
Received: 06.03.2009
Citation:
S. V. Astashkin, L. Maligranda, “Geometry of Cesàro Function Spaces”, Funktsional. Anal. i Prilozhen., 45:1 (2011), 79–83; Funct. Anal. Appl., 45:1 (2011), 64–68
Linking options:
https://www.mathnet.ru/eng/faa3024https://doi.org/10.4213/faa3024 https://www.mathnet.ru/eng/faa/v45/i1/p79
|
|