Abstract:
Geometric properties of Cesàro function spaces Cesp(I), where I=[0,∞) or
I=[0,1], are investigated. In both cases, a description of their dual spaces for 1<p<∞ is
given. We find the type and the cotype of Cesàro spaces and present a complete characterization
of the spaces lq that have isomorphic copies in Cesp[0,1] (1⩽p<∞).
Keywords:
Cesàro space, Köthe dual space, dual space, q-concave Banach space, type and cotype of a Banach space, Dunford–Pettis property.
Citation:
S. V. Astashkin, L. Maligranda, “Geometry of Cesàro Function Spaces”, Funktsional. Anal. i Prilozhen., 45:1 (2011), 79–83; Funct. Anal. Appl., 45:1 (2011), 64–68