Loading [MathJax]/jax/output/CommonHTML/jax.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2010, Volume 44, Issue 4, Pages 34–53
DOI: https://doi.org/10.4213/faa3022
(Mi faa3022)
 

This article is cited in 65 scientific papers (total in 65 papers)

Inverse Problems for Sturm–Liouville Operators with Potentials in Sobolev Spaces: Uniform Stability

A. M. Savchuk, A. A. Shkalikov

M. V. Lomonosov Moscow State University
References:
Abstract: Two inverse problems for the Sturm–Liouville operator Ly=y+q(x)y on the interval [0,π] are studied. For θ0, there is a mapping F:Wθ2lθB, F(σ)={sk}1, related to the first of these problems, where Wθ2=Wθ2[0,π] is the Sobolev space, σ=q is a primitive of the potential q, and lθB is a specially constructed finite-dimensional extension of the weighted space lθ2, where we place the regularized spectral data s={sk}1 in the problem of reconstruction from two spectra. The main result is uniform lower and upper bounds for σσ1θ via the lθB-norm ss1θ of the difference of regularized spectral data. A similar result is obtained for the second inverse problem, that is, the problem of reconstructing the potential from the spectral function of the operator L generated by the Dirichlet boundary conditions. The result is new even for the classical case qL2, which corresponds to θ=1.
Keywords: inverse Sturm–Liouville problem, singular potentials, stability for inverse problems.
Received: 17.05.2010
English version:
Functional Analysis and Its Applications, 2010, Volume 44, Issue 4, Pages 270–285
DOI: https://doi.org/10.1007/s10688-010-0038-6
Bibliographic databases:
Document Type: Article
UDC: 517.984.54
Language: Russian
Citation: A. M. Savchuk, A. A. Shkalikov, “Inverse Problems for Sturm–Liouville Operators with Potentials in Sobolev Spaces: Uniform Stability”, Funktsional. Anal. i Prilozhen., 44:4 (2010), 34–53; Funct. Anal. Appl., 44:4 (2010), 270–285
Citation in format AMSBIB
\Bibitem{SavShk10}
\by A.~M.~Savchuk, A.~A.~Shkalikov
\paper Inverse Problems for Sturm--Liouville Operators with Potentials in Sobolev Spaces: Uniform Stability
\jour Funktsional. Anal. i Prilozhen.
\yr 2010
\vol 44
\issue 4
\pages 34--53
\mathnet{http://mi.mathnet.ru/faa3022}
\crossref{https://doi.org/10.4213/faa3022}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2768563}
\zmath{https://zbmath.org/?q=an:1271.34017}
\transl
\jour Funct. Anal. Appl.
\yr 2010
\vol 44
\issue 4
\pages 270--285
\crossref{https://doi.org/10.1007/s10688-010-0038-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288487100004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78650715963}
Linking options:
  • https://www.mathnet.ru/eng/faa3022
  • https://doi.org/10.4213/faa3022
  • https://www.mathnet.ru/eng/faa/v44/i4/p34
  • This publication is cited in the following 65 articles:
    1. Egor Evgenevich Chitorkin, Natalia Pavlovna Bondarenko, “Inverse Sturm–Liouville problem with polynomials in the boundary condition and multiple eigenvalues”, Journal of Inverse and Ill-posed Problems, 2025  crossref
    2. E.E. Chitorkin, N.P. Bondarenko, “Inverse Sturm-Liouville problem with singular potential and spectral parameter in the boundary conditions”, Journal of Differential Equations, 421 (2025), 495  crossref
    3. N. P. Bondarenko, “Ravnomernaya ustoichivost zadachi Khokhshtadta–Libermana”, Matem. zametki, 117:3 (2025), 333–343  mathnet  crossref
    4. Egor E. Chitorkin, Natalia P. Bondarenko, “Local solvability and stability for the inverse Sturm‐Liouville problem with polynomials in the boundary conditions”, Math Methods in App Sciences, 2024  crossref
    5. A. M. Savchuk, I. V. Sadovnichaya, “Spectral Analysis of 1D Dirac System with Summable Potential and Sturm–Liouville Operator with Distribution Coefficients”, Diff Equat, 60:S2 (2024), 145  crossref
    6. A. A. Golubkov, “Obratnaya zadacha dlya operatorov Shturma — Liuvillya c kucochno-tselym potentsialom i usloviyami razryva reshenii na krivoi”, Sib. matem. zhurn., 64:3 (2023), 486–499  mathnet  crossref
    7. Jonathan Ben-Artzi, Marco Marletta, Frank Rösler, “On the complexity of the inverse Sturm–Liouville problem”, Pure Appl. Analysis, 5:4 (2023), 895  crossref
    8. Maria Kuznetsova, “Uniform Stability of Recovering Sturm–Liouville-Type Operators with Frozen Argument”, Results Math, 78:5 (2023)  crossref
    9. Natalia P. Bondarenko, “Local Solvability and Stability of an Inverse Spectral Problem for Higher-Order Differential Operators”, Mathematics, 11:18 (2023), 3818  crossref
    10. Natalia P. Bondarenko, “Regularization and Inverse Spectral Problems for Differential Operators with Distribution Coefficients”, Mathematics, 11:16 (2023), 3455  crossref
    11. A. A. Golubkov, “An Inverse Problem for Sturm–Liouville Operators with a Piecewise Entire Potential and Discontinuity Conditions of Solutions on a Curve”, Sib Math J, 64:3 (2023), 542  crossref
    12. Sergey Buterin, “Functional-Differential Operators on Geometrical Graphs with Global Delay and Inverse Spectral Problems”, Results Math, 78:3 (2023)  crossref
    13. Natalia Pavlovna Bondarenko, “Linear differential operators with distribution coefficients of various singularity orders”, Math Methods in App Sciences, 46:6 (2023), 6639  crossref
    14. Egor E. Chitorkin, Natalia P. Bondarenko, “Solving the inverse Sturm–Liouville problem with singular potential and with polynomials in the boundary conditions”, Anal.Math.Phys., 13:5 (2023)  crossref
    15. Yan Guo, Li‐Jie Ma, Xiao‐Chuan Xu, Qi An, “Weak and strong stability of the inverse Sturm‐Liouville problem”, Math Methods in App Sciences, 46:14 (2023), 15684  crossref
    16. S. A. Buterin, “On the Uniform Stability of Recovering Sine-Type Functions with Asymptotically Separated Zeros”, Math. Notes, 111:3 (2022), 343–355  mathnet  crossref  crossref  mathscinet
    17. M. B. Zvereva, “Model deformatsii sistemy stiltesovskikh strun s nelineinym usloviem”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:4 (2022), 528–545  mathnet  crossref  mathscinet
    18. Natalia P. Bondarenko, “Reconstruction of Higher-Order Differential Operators by Their Spectral Data”, Mathematics, 10:20 (2022), 3882  crossref
    19. Fritz Gesztesy, Roger Nichols, “Strict domain monotonicity of the principal eigenvalue and a characterization of lower boundedness for the Friedrichs extension of four-coefficient Sturm–Liouville operators”, Acta Sci. Math. (Szeged), 88:1-2 (2022), 189  crossref
    20. S. Buterin, N. Djurić, “Inverse Problems for Dirac Operators with Constant Delay: Uniqueness, Characterization, Uniform Stability”, Lobachevskii J Math, 43:6 (2022), 1492  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:1259
    Full-text PDF :505
    References:120
    First page:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025