Abstract:
An identity in abstract scattering theory is discussed. This identity can be interpreted as an integer-valued version of the Birman–Krein formula.
Citation:
A. B. Pushnitskii, “An Integer-Valued Version of the Birman–Krein Formula”, Funktsional. Anal. i Prilozhen., 44:4 (2010), 80–86; Funct. Anal. Appl., 44:4 (2010), 307–312
\Bibitem{Pus10}
\by A.~B.~Pushnitskii
\paper An Integer-Valued Version of the Birman--Krein Formula
\jour Funktsional. Anal. i Prilozhen.
\yr 2010
\vol 44
\issue 4
\pages 80--86
\mathnet{http://mi.mathnet.ru/faa3015}
\crossref{https://doi.org/10.4213/faa3015}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2768566}
\zmath{https://zbmath.org/?q=an:1271.47009}
\transl
\jour Funct. Anal. Appl.
\yr 2010
\vol 44
\issue 4
\pages 307--312
\crossref{https://doi.org/10.1007/s10688-010-0041-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288487100007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78650680403}
Linking options:
https://www.mathnet.ru/eng/faa3015
https://doi.org/10.4213/faa3015
https://www.mathnet.ru/eng/faa/v44/i4/p80
This publication is cited in the following 2 articles:
Carey A., Gesztesy F., Levitina G., Potapov D., Sukochev F., Zanin D., “On index theory for non-Fredholm operators: A (1 + 1)-dimensional example”, Math. Nachr., 289:5-6 (2016), 575–609
Pushnitski A., “The Birman-Schwinger principle on the essential spectrum”, J. Funct. Anal., 261:7 (2011), 2053–2081