Loading [MathJax]/jax/output/CommonHTML/jax.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2010, Volume 44, Issue 3, Pages 73–76
DOI: https://doi.org/10.4213/faa2997
(Mi faa2997)
 

This article is cited in 20 scientific papers (total in 20 papers)

Brief communications

Bony Attractors

Yu. G. Kudryashovabc

a M. V. Lomonosov Moscow State University
b Independent University of Moscow
c Ecolé Normale Supériore de Lyon
References:
Abstract: A new possible geometry of an attractor of a dynamical system, a bony attractor, is described. A bony attractor is the union of two parts. The first part is the graph of a continuous function defined on a subset of Σk, the set of bi-infinite sequences of integers m in the range 0m<k. The second part is the union of uncountably many intervals contained in the closure of the graph. An open set of skew products over the Bernoulli shift (σω)i=ωi+1 with fiber [0,1] is constructed such that each system in this set has a bony attractor.
Keywords: attractor, dynamical system, skew product, Bernoulli shift.
Received: 13.07.2009
English version:
Functional Analysis and Its Applications, 2010, Volume 44, Issue 3, Pages 219–222
DOI: https://doi.org/10.1007/s10688-010-0028-8
Bibliographic databases:
Document Type: Article
UDC: 517.938
Language: Russian
Citation: Yu. G. Kudryashov, “Bony Attractors”, Funktsional. Anal. i Prilozhen., 44:3 (2010), 73–76; Funct. Anal. Appl., 44:3 (2010), 219–222
Citation in format AMSBIB
\Bibitem{Kud10}
\by Yu.~G.~Kudryashov
\paper Bony Attractors
\jour Funktsional. Anal. i Prilozhen.
\yr 2010
\vol 44
\issue 3
\pages 73--76
\mathnet{http://mi.mathnet.ru/faa2997}
\crossref{https://doi.org/10.4213/faa2997}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2760517}
\zmath{https://zbmath.org/?q=an:1271.37030}
\transl
\jour Funct. Anal. Appl.
\yr 2010
\vol 44
\issue 3
\pages 219--222
\crossref{https://doi.org/10.1007/s10688-010-0028-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282097300008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77957050614}
Linking options:
  • https://www.mathnet.ru/eng/faa2997
  • https://doi.org/10.4213/faa2997
  • https://www.mathnet.ru/eng/faa/v44/i3/p73
  • This publication is cited in the following 20 articles:
    1. Lorenzo J. Díaz, Katrin Gelfert, Michał Rams, “Mingled hyperbolicities: Ergodic properties and bifurcation phenomena (an approach using concavity)”, DCDS, 42:11 (2022), 5309  crossref
    2. Pablo G. Barrientos, Yushi Nakano, Artem Raibekas, Mario Roldan, “Topological entropy and Hausdorff dimension of irregular sets for non-hyperbolic dynamical systems”, Dynamical Systems, 37:2 (2022), 181  crossref
    3. Matias E. Silva E., “Random Iterations of Maps on Rk: Asymptotic Stability, Synchronisation and Functional Central Limit Theorem”, Nonlinearity, 34:3 (2021), 1577–1597  crossref  mathscinet  isi
    4. Lorenzo J. Díaz, Edgar Matias, “Attracting graphs of skew products with non-contracting fiber maps”, Math. Z., 291:3-4 (2019), 1543  crossref
    5. M. Zaj, F. H. Ghane, “Non Hyperbolic Solenoidal Thick Bony Attractors”, Qual. Theory Dyn. Syst., 18:1 (2019), 35  crossref
    6. Walkden C.P., Withers T., “Invariant Graphs of a Family of Non-Uniformly Expanding Skew Products Over Markov Maps”, Nonlinearity, 31:6 (2018), 2726–2755  crossref  mathscinet  zmath  isi  scopus
    7. Lorenzo J Díaz, Edgar Matias, “Stability of the Markov operator and synchronization of Markovian random products”, Nonlinearity, 31:5 (2018), 1782  crossref
    8. Ilyashenko Yu. Shilin I., “Attractors and Skew Products”, Modern Theory of Dynamical Systems: a Tribute to Dmitry Victorovich Anosov, Contemporary Mathematics, 692, ed. Katok A. Pesin Y. Hertz F., Amer Mathematical Soc, 2017, 155–175  crossref  mathscinet  zmath  isi  scopus
    9. Malicet D., “Random Walks on Homeo(S (1))”, Commun. Math. Phys., 356:3 (2017), 1083–1116  crossref  mathscinet  zmath  isi  scopus
    10. Okunev A., “Milnor Attractors of Skew Products With the Fiber a Circle”, J. Dyn. Control Syst., 23:2 (2017), 421–433  crossref  mathscinet  zmath  isi  scopus
    11. Gharaei M., Homburg A.J., “Skew products of interval maps over subshifts”, J. Differ. Equ. Appl., 22:7 (2016), 941–958  crossref  mathscinet  isi  elib  scopus
    12. Yulij Ilyashenko, Olga Romaskevich, “Sternberg Linearization Theorem for Skew Products”, J Dyn Control Syst, 22:3 (2016), 595  crossref
    13. Diaz L.J., Marcarini T., “Generation of Spines in Porcupine-Like Horseshoes”, Nonlinearity, 28:11 (2015), 4249–4279  crossref  mathscinet  zmath  isi  elib  scopus
    14. V. Kleptsyn, D. Volk, “Physical measures for nonlinear random walks on interval”, Mosc. Math. J., 14:2 (2014), 339–365  mathnet  crossref  mathscinet
    15. L J Díaz, K Gelfert, M Rams, “Abundant rich phase transitions in step-skew products”, Nonlinearity, 27:9 (2014), 2255  crossref
    16. Diaz L.J. Gelfert K., “Porcupine-Like Horseshoes: Topological and Ergodic Aspects”, Progress and Challenges in Dynamical Systems, Springer Proceedings in Mathematics & Statistics, 54, ed. Ibanez S. DelRio J. Pumarino A. Rodriguez J., Springer-Verlag Berlin, 2013, 199–219  crossref  mathscinet  zmath  isi  scopus
    17. Yu. S. Ilyashenko, I. S. Shilin, “Relatively unstable attractors”, Proc. Steklov Inst. Math., 277 (2012), 84–93  mathnet  crossref  mathscinet  isi  elib  elib
    18. Yu. S. Ilyashenko, “Multidimensional Bony Attractors”, Funct. Anal. Appl., 46:4 (2012), 239–248  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    19. Ilyashenko Yu. Negut A., “Hölder properties of perturbed skew products and Fubini regained”, Nonlinearity, 25:8 (2012), 2377–2399  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    20. Diaz L.J. Gelfert K., “Porcupine-like horseshoes: transitivity, Lyapunov spectrum, and phase transitions”, Fund. Math., 216:1 (2012), 55–100  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:580
    Full-text PDF :222
    References:69
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025