Abstract:
We consider families of Abelian integrals arising from perturbations of planar Hamiltonian systems. The tangential center–focus problem asks for conditions under which these
integrals vanish identically. The problem is closely related to the monodromy problem, which asks when the monodromy of a vanishing cycle generates the whole homology of the level curves of the Hamiltonian. We solve both of these questions for the case in which the Hamiltonian is hyperelliptic. As a by-product, we solve the corresponding problems for the 0-dimensional Abelian integrals defined by Gavrilov and Movasati.
Keywords:
tangential center, Abelian integral, composition, monodromy.
Citation:
C. Christopher, P. Mardešic, “The Monodromy Problem and the Tangential Center Problem”, Funktsional. Anal. i Prilozhen., 44:1 (2010), 27–43; Funct. Anal. Appl., 44:1 (2010), 22–35
\Bibitem{ChrMar10}
\by C.~Christopher, P.~Marde{\v s}ic
\paper The Monodromy Problem and the Tangential Center Problem
\jour Funktsional. Anal. i Prilozhen.
\yr 2010
\vol 44
\issue 1
\pages 27--43
\mathnet{http://mi.mathnet.ru/faa2980}
\crossref{https://doi.org/10.4213/faa2980}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2656383}
\zmath{https://zbmath.org/?q=an:1271.34035}
\elib{https://elibrary.ru/item.asp?id=15443918}
\transl
\jour Funct. Anal. Appl.
\yr 2010
\vol 44
\issue 1
\pages 22--35
\crossref{https://doi.org/10.1007/s10688-010-0003-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275790900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77949590884}
Linking options:
https://www.mathnet.ru/eng/faa2980
https://doi.org/10.4213/faa2980
https://www.mathnet.ru/eng/faa/v44/i1/p27
This publication is cited in the following 10 articles:
Daniel López-Garcia, Fabricio Valencia, “On the monodromy action for 𝑓(𝑥,𝑦)=𝑔(𝑥)+ℎ(𝑦)”, Proc. Amer. Math. Soc., 2025
J.L. Bravo, P. Mardešić, D. Novikov, J. Pontigo-Herrera, “Infinitesimal and tangential 16-th Hilbert problem on zero-cycles”, Bulletin des Sciences Mathématiques, 2025, 103634
A. Álvarez, J. L. Bravo, C. Christopher, P. Mardešić, “Infinitesimal Center Problem on Zero Cycles and the Composition Conjecture”, Funct. Anal. Appl., 55:4 (2021), 257–271
Garcia D.L., “The Monodromy Problem For Hyperelliptic Curves”, Bull. Sci. Math., 170 (2021), 102998
Pontigo-Herrera J., “Tangential Center Problem For a Family of Non-Generic Hamiltonians”, J. Dyn. Control Syst., 23:3 (2017), 597–622
A. Álvarez, J.L. Bravo, C. Christopher, “On the Trigonometric Moment Problem”, Ergod. Theory Dyn. Syst., 34:1 (2014), 1–20
L. Gavrilov, F. Pakovich, “Moments on Riemann surfaces and hyperelliptic Abelian integrals”, Comment. Math. Helv., 89:1 (2014), 125–155
Alvarez A., Bravo J.L., Mardesic P., “Vanishing Abelian Integrals on Zero-Dimensional Cycles”, Proc. London Math. Soc., 107:6 (2013), 1302–1330
A. Álvarez, J. L. Bravo, P. Mardešić, “Inductive solution of the tangential center problem on zero-cycles”, Mosc. Math. J., 13:4 (2013), 555–583
Francoise J.P., Pakovich F., Yomdin Y., Zhao W., “Moment vanishing problem and positivity: Some examples”, Bull. Sci. Math., 135:1 (2011), 10–32