Loading [MathJax]/jax/output/CommonHTML/jax.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2010, Volume 44, Issue 1, Pages 27–43
DOI: https://doi.org/10.4213/faa2980
(Mi faa2980)
 

This article is cited in 10 scientific papers (total in 10 papers)

The Monodromy Problem and the Tangential Center Problem

C. Christophera, P. Mardešicb

a School of Mathematics and Statistics, University of Plymouth
b Institut de Mathématiques de Bourgogne, Unité mixte de recherche 5584 du C.N.R.S., Université de Bourgogne
References:
Abstract: We consider families of Abelian integrals arising from perturbations of planar Hamiltonian systems. The tangential center–focus problem asks for conditions under which these integrals vanish identically. The problem is closely related to the monodromy problem, which asks when the monodromy of a vanishing cycle generates the whole homology of the level curves of the Hamiltonian. We solve both of these questions for the case in which the Hamiltonian is hyperelliptic. As a by-product, we solve the corresponding problems for the 0-dimensional Abelian integrals defined by Gavrilov and Movasati.
Keywords: tangential center, Abelian integral, composition, monodromy.
Received: 08.10.2008
English version:
Functional Analysis and Its Applications, 2010, Volume 44, Issue 1, Pages 22–35
DOI: https://doi.org/10.1007/s10688-010-0003-4
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: C. Christopher, P. Mardešic, “The Monodromy Problem and the Tangential Center Problem”, Funktsional. Anal. i Prilozhen., 44:1 (2010), 27–43; Funct. Anal. Appl., 44:1 (2010), 22–35
Citation in format AMSBIB
\Bibitem{ChrMar10}
\by C.~Christopher, P.~Marde{\v s}ic
\paper The Monodromy Problem and the Tangential Center Problem
\jour Funktsional. Anal. i Prilozhen.
\yr 2010
\vol 44
\issue 1
\pages 27--43
\mathnet{http://mi.mathnet.ru/faa2980}
\crossref{https://doi.org/10.4213/faa2980}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2656383}
\zmath{https://zbmath.org/?q=an:1271.34035}
\elib{https://elibrary.ru/item.asp?id=15443918}
\transl
\jour Funct. Anal. Appl.
\yr 2010
\vol 44
\issue 1
\pages 22--35
\crossref{https://doi.org/10.1007/s10688-010-0003-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275790900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77949590884}
Linking options:
  • https://www.mathnet.ru/eng/faa2980
  • https://doi.org/10.4213/faa2980
  • https://www.mathnet.ru/eng/faa/v44/i1/p27
  • This publication is cited in the following 10 articles:
    1. Daniel López-Garcia, Fabricio Valencia, “On the monodromy action for 𝑓(𝑥,𝑦)=𝑔(𝑥)+ℎ(𝑦)”, Proc. Amer. Math. Soc., 2025  crossref
    2. J.L. Bravo, P. Mardešić, D. Novikov, J. Pontigo-Herrera, “Infinitesimal and tangential 16-th Hilbert problem on zero-cycles”, Bulletin des Sciences Mathématiques, 2025, 103634  crossref
    3. A. Álvarez, J. L. Bravo, C. Christopher, P. Mardešić, “Infinitesimal Center Problem on Zero Cycles and the Composition Conjecture”, Funct. Anal. Appl., 55:4 (2021), 257–271  mathnet  crossref  crossref  isi
    4. Garcia D.L., “The Monodromy Problem For Hyperelliptic Curves”, Bull. Sci. Math., 170 (2021), 102998  crossref  mathscinet  isi
    5. Pontigo-Herrera J., “Tangential Center Problem For a Family of Non-Generic Hamiltonians”, J. Dyn. Control Syst., 23:3 (2017), 597–622  crossref  mathscinet  zmath  isi  scopus
    6. A. Álvarez, J.L. Bravo, C. Christopher, “On the Trigonometric Moment Problem”, Ergod. Theory Dyn. Syst., 34:1 (2014), 1–20  crossref  mathscinet  zmath  isi  scopus
    7. L. Gavrilov, F. Pakovich, “Moments on Riemann surfaces and hyperelliptic Abelian integrals”, Comment. Math. Helv., 89:1 (2014), 125–155  crossref  mathscinet  zmath  isi  scopus
    8. Alvarez A., Bravo J.L., Mardesic P., “Vanishing Abelian Integrals on Zero-Dimensional Cycles”, Proc. London Math. Soc., 107:6 (2013), 1302–1330  crossref  mathscinet  zmath  isi  scopus
    9. A. Álvarez, J. L. Bravo, P. Mardešić, “Inductive solution of the tangential center problem on zero-cycles”, Mosc. Math. J., 13:4 (2013), 555–583  mathnet  crossref  mathscinet
    10. Francoise J.P., Pakovich F., Yomdin Y., Zhao W., “Moment vanishing problem and positivity: Some examples”, Bull. Sci. Math., 135:1 (2011), 10–32  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:560
    Full-text PDF :211
    References:74
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025