Abstract:
We consider a strongly elliptic second-order system in a bounded $n$-dimensional domain $\Omega^+$ with Lipschitz boundary $\Gamma$, $n\ge2$. The smoothness assumptions on the coefficients are minimized. For convenience, we assume that the domain is contained in the standard torus $\mathbb{T}^n$. In previous papers, we obtained results on the unique solvability of the Dirichlet and Neumann problems in the spaces $H^\sigma_p$ and $B^\sigma_p$ without use of surface potentials. In the present paper, using the approach proposed by Costabel and McLean, we define surface potentials and discuss their properties assuming that the Dirichlet and Neumann problems in $\Omega^+$ and the complementing domain $\Omega^-$ are uniquely solvable. In particular, we prove the invertibility of the integral single layer operator and the hypersingular operator in Besov spaces on $\Gamma$. We describe some of their spectral properties as well as those of the corresponding transmission problems.
Citation:
M. S. Agranovich, “Potential Type Operators and Transmission Problems for Strongly Elliptic Second-Order Systems in Lipschitz Domains”, Funktsional. Anal. i Prilozhen., 43:3 (2009), 3–25; Funct. Anal. Appl., 43:3 (2009), 165–183
\Bibitem{Agr09}
\by M.~S.~Agranovich
\paper Potential Type Operators and Transmission Problems for Strongly Elliptic Second-Order Systems in Lipschitz Domains
\jour Funktsional. Anal. i Prilozhen.
\yr 2009
\vol 43
\issue 3
\pages 3--25
\mathnet{http://mi.mathnet.ru/faa2964}
\crossref{https://doi.org/10.4213/faa2964}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2583636}
\zmath{https://zbmath.org/?q=an:1272.47065}
\elib{https://elibrary.ru/item.asp?id=15300523}
\transl
\jour Funct. Anal. Appl.
\yr 2009
\vol 43
\issue 3
\pages 165--183
\crossref{https://doi.org/10.1007/s10688-009-0025-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269897000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-71449114244}
Linking options:
https://www.mathnet.ru/eng/faa2964
https://doi.org/10.4213/faa2964
https://www.mathnet.ru/eng/faa/v43/i3/p3
This publication is cited in the following 19 articles:
David Natroshvili, Tornike Tsertsvadze, “On an Alternative Approach for Mixed Boundary Value Problems for the Lamé System”, J Elast, 153:3 (2023), 399
Ariel E. Barton, Michael J. Duffy, “Gradient estimates and the fundamental solution for higher-order elliptic systems with lower-order terms”, Advanced Nonlinear Studies, 23:1 (2023)
Grigori Rozenblum, Grigory Tashchiyan, “Eigenvalues of the Birman-Schwinger operator for singular measures: The noncritical case”, Journal of Functional Analysis, 283:12 (2022), 109704
Barton A., Hofmann S., Mayboroda S., “Dirichlet and Neumann Boundary Values of Solutions to Higher Order Elliptic Equations”, Ann. Inst. Fourier, 69:4 (2019), 1627–1678
Ariel Barton, Steve Hofmann, Svitlana Mayboroda, “Bounds on layer potentials with rough inputs for higher order elliptic equations”, Proc. London Math. Soc., 119:3 (2019), 613
Ariel Barton, Steve Hofmann, Svitlana Mayboroda, “Square function estimates on layer potentials for higher‐order elliptic equations”, Mathematische Nachrichten, 290:16 (2017), 2459
Rabinovich V., “Integral Equations of Diffraction Problems With Unbounded Smooth Obstacles”, Integr. Equ. Oper. Theory, 84:2 (2016), 235–266
Rabinovich V., “Lp -theory of boundary integral operators for domains with unbounded smooth boundary”, Georgian Math. J., 23:4 (2016), 595–614
V. Rabinovich, “Boundary problems for domains with conical exits at infinity and limit operators”, Complex Var. Elliptic Equ., 60:3 (2015), 293–309
Vladimir Rabinovich, “Transmission problems for conical and quasi-conical at infinity domains”, Applicable Analysis, 94:10 (2015), 2077
V. S. Rabinovich, “Acoustic Diffraction Problems on Periodic Graphs”, Funct. Anal. Appl., 48:4 (2014), 298–303
V. Rabinovich, “Diffraction by periodic graphs”, Complex Var. Elliptic Equ., 59:4 (2014), 578–598
M. S. Agranovich, A. M. Selitskii, “Fractional Powers of Operators Corresponding to Coercive Problems in Lipschitz Domains”, Funct. Anal. Appl., 47:2 (2013), 83–95
Rabinovich V., “On Boundary Integral Operators for Diffraction Problems on Graphs with Finitely Many Exits at Infinity”, Russ. J. Math. Phys., 20:4 (2013), 508–522
Agranovich M.S., “Remarks on strongly elliptic systems in Lipschitz domains”, Russ. J. Math. Phys., 19:4 (2012), 405–416
M. S. Agranovich, “Spectral problems in Lipschitz domains”, Journal of Mathematical Sciences, 190:1 (2013), 8–33
M. S. Agranovich, “Strongly Elliptic Second-Order Systems with Boundary Conditions on a Nonclosed Lipschitz Surface”, Funct. Anal. Appl., 45:1 (2011), 1–12
M. S. Agranovich, “Mixed Problems in a Lipschitz Domain for Strongly Elliptic Second-Order Systems”, Funct. Anal. Appl., 45:2 (2011), 81–98
V. G. Maz'ya, M. Mitrea, T. O. Shaposhnikova, “The Inhomogeneous Dirichlet Problem for the Stokes System in Lipschitz Domains with Unit Normal Close to VMO”, Funct. Anal. Appl., 43:3 (2009), 217–235