Loading [MathJax]/jax/output/SVG/config.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2009, Volume 43, Issue 3, Pages 3–25
DOI: https://doi.org/10.4213/faa2964
(Mi faa2964)
 

This article is cited in 19 scientific papers (total in 19 papers)

Potential Type Operators and Transmission Problems for Strongly Elliptic Second-Order Systems in Lipschitz Domains

M. S. Agranovich

Moscow State Institute of Electronics and Mathematics
References:
Abstract: We consider a strongly elliptic second-order system in a bounded $n$-dimensional domain $\Omega^+$ with Lipschitz boundary $\Gamma$, $n\ge2$. The smoothness assumptions on the coefficients are minimized. For convenience, we assume that the domain is contained in the standard torus $\mathbb{T}^n$. In previous papers, we obtained results on the unique solvability of the Dirichlet and Neumann problems in the spaces $H^\sigma_p$ and $B^\sigma_p$ without use of surface potentials. In the present paper, using the approach proposed by Costabel and McLean, we define surface potentials and discuss their properties assuming that the Dirichlet and Neumann problems in $\Omega^+$ and the complementing domain $\Omega^-$ are uniquely solvable. In particular, we prove the invertibility of the integral single layer operator and the hypersingular operator in Besov spaces on $\Gamma$. We describe some of their spectral properties as well as those of the corresponding transmission problems.
Keywords: strongly elliptic system, Lipschitz domain, Dirichlet problem, Neumann problem, Bessel potential space, Besov space, surface potential, transmission problem.
Received: 19.01.2009
English version:
Functional Analysis and Its Applications, 2009, Volume 43, Issue 3, Pages 165–183
DOI: https://doi.org/10.1007/s10688-009-0025-y
Bibliographic databases:
Document Type: Article
UDC: 517.98+517.95
Language: Russian
Citation: M. S. Agranovich, “Potential Type Operators and Transmission Problems for Strongly Elliptic Second-Order Systems in Lipschitz Domains”, Funktsional. Anal. i Prilozhen., 43:3 (2009), 3–25; Funct. Anal. Appl., 43:3 (2009), 165–183
Citation in format AMSBIB
\Bibitem{Agr09}
\by M.~S.~Agranovich
\paper Potential Type Operators and Transmission Problems for Strongly Elliptic Second-Order Systems in Lipschitz Domains
\jour Funktsional. Anal. i Prilozhen.
\yr 2009
\vol 43
\issue 3
\pages 3--25
\mathnet{http://mi.mathnet.ru/faa2964}
\crossref{https://doi.org/10.4213/faa2964}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2583636}
\zmath{https://zbmath.org/?q=an:1272.47065}
\elib{https://elibrary.ru/item.asp?id=15300523}
\transl
\jour Funct. Anal. Appl.
\yr 2009
\vol 43
\issue 3
\pages 165--183
\crossref{https://doi.org/10.1007/s10688-009-0025-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269897000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-71449114244}
Linking options:
  • https://www.mathnet.ru/eng/faa2964
  • https://doi.org/10.4213/faa2964
  • https://www.mathnet.ru/eng/faa/v43/i3/p3
  • This publication is cited in the following 19 articles:
    1. David Natroshvili, Tornike Tsertsvadze, “On an Alternative Approach for Mixed Boundary Value Problems for the Lamé System”, J Elast, 153:3 (2023), 399  crossref
    2. Ariel E. Barton, Michael J. Duffy, “Gradient estimates and the fundamental solution for higher-order elliptic systems with lower-order terms”, Advanced Nonlinear Studies, 23:1 (2023)  crossref
    3. Grigori Rozenblum, Grigory Tashchiyan, “Eigenvalues of the Birman-Schwinger operator for singular measures: The noncritical case”, Journal of Functional Analysis, 283:12 (2022), 109704  crossref
    4. Barton A., Hofmann S., Mayboroda S., “Dirichlet and Neumann Boundary Values of Solutions to Higher Order Elliptic Equations”, Ann. Inst. Fourier, 69:4 (2019), 1627–1678  crossref  mathscinet  zmath  isi
    5. Ariel Barton, Steve Hofmann, Svitlana Mayboroda, “Bounds on layer potentials with rough inputs for higher order elliptic equations”, Proc. London Math. Soc., 119:3 (2019), 613  crossref
    6. Ariel Barton, Steve Hofmann, Svitlana Mayboroda, “Square function estimates on layer potentials for higher‐order elliptic equations”, Mathematische Nachrichten, 290:16 (2017), 2459  crossref
    7. Rabinovich V., “Integral Equations of Diffraction Problems With Unbounded Smooth Obstacles”, Integr. Equ. Oper. Theory, 84:2 (2016), 235–266  crossref  mathscinet  zmath  isi
    8. Rabinovich V., “Lp -theory of boundary integral operators for domains with unbounded smooth boundary”, Georgian Math. J., 23:4 (2016), 595–614  crossref  mathscinet  zmath  isi  scopus
    9. V. Rabinovich, “Boundary problems for domains with conical exits at infinity and limit operators”, Complex Var. Elliptic Equ., 60:3 (2015), 293–309  crossref  mathscinet  zmath  isi
    10. Vladimir Rabinovich, “Transmission problems for conical and quasi-conical at infinity domains”, Applicable Analysis, 94:10 (2015), 2077  crossref
    11. V. S. Rabinovich, “Acoustic Diffraction Problems on Periodic Graphs”, Funct. Anal. Appl., 48:4 (2014), 298–303  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    12. V. Rabinovich, “Diffraction by periodic graphs”, Complex Var. Elliptic Equ., 59:4 (2014), 578–598  crossref  mathscinet  zmath  isi  elib
    13. M. S. Agranovich, A. M. Selitskii, “Fractional Powers of Operators Corresponding to Coercive Problems in Lipschitz Domains”, Funct. Anal. Appl., 47:2 (2013), 83–95  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    14. Rabinovich V., “On Boundary Integral Operators for Diffraction Problems on Graphs with Finitely Many Exits at Infinity”, Russ. J. Math. Phys., 20:4 (2013), 508–522  crossref  mathscinet  zmath  isi
    15. Agranovich M.S., “Remarks on strongly elliptic systems in Lipschitz domains”, Russ. J. Math. Phys., 19:4 (2012), 405–416  crossref  mathscinet  zmath  isi  elib
    16. M. S. Agranovich, “Spectral problems in Lipschitz domains”, Journal of Mathematical Sciences, 190:1 (2013), 8–33  mathnet  crossref  mathscinet
    17. M. S. Agranovich, “Strongly Elliptic Second-Order Systems with Boundary Conditions on a Nonclosed Lipschitz Surface”, Funct. Anal. Appl., 45:1 (2011), 1–12  mathnet  crossref  crossref  mathscinet  zmath  isi
    18. M. S. Agranovich, “Mixed Problems in a Lipschitz Domain for Strongly Elliptic Second-Order Systems”, Funct. Anal. Appl., 45:2 (2011), 81–98  mathnet  crossref  crossref  mathscinet  zmath  isi
    19. V. G. Maz'ya, M. Mitrea, T. O. Shaposhnikova, “The Inhomogeneous Dirichlet Problem for the Stokes System in Lipschitz Domains with Unit Normal Close to VMO”, Funct. Anal. Appl., 43:3 (2009), 217–235  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:675
    Full-text PDF :295
    References:97
    First page:13
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025