Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2009, Volume 43, Issue 3, Pages 65–88
DOI: https://doi.org/10.4213/faa2960
(Mi faa2960)
 

This article is cited in 29 scientific papers (total in 29 papers)

The Inhomogeneous Dirichlet Problem for the Stokes System in Lipschitz Domains with Unit Normal Close to VMO

V. G. Maz'yaab, M. Mitreac, T. O. Shaposhnikovab

a University of Liverpool
b Linköping University
c University of Missouri
References:
Abstract: The goal of this work is to study the inhomogeneous Dirichlet problem for the Stokes system in a Lipschitz domain $\Omega\subseteq\mathbb{R}^n$, $n\ge 2$. Our main result is that this problem is well posed in Besov–Triebel–Lizorkin spaces, provided that the unit normal $\nu$ to $\Omega$ has small mean oscillation.
Keywords: Stokes system, Lipschitz domain, boundary value problem, Besov–Triebel–Lizorkin spaces.
Received: 06.05.2009
English version:
Functional Analysis and Its Applications, 2009, Volume 43, Issue 3, Pages 217–235
DOI: https://doi.org/10.1007/s10688-009-0029-7
Bibliographic databases:
Document Type: Article
UDC: 517.956.223+517.518.23
Language: Russian
Citation: V. G. Maz'ya, M. Mitrea, T. O. Shaposhnikova, “The Inhomogeneous Dirichlet Problem for the Stokes System in Lipschitz Domains with Unit Normal Close to VMO”, Funktsional. Anal. i Prilozhen., 43:3 (2009), 65–88; Funct. Anal. Appl., 43:3 (2009), 217–235
Citation in format AMSBIB
\Bibitem{MazMitSha09}
\by V.~G.~Maz'ya, M.~Mitrea, T.~O.~Shaposhnikova
\paper The Inhomogeneous Dirichlet Problem for the Stokes System in Lipschitz Domains with Unit Normal Close to~VMO
\jour Funktsional. Anal. i Prilozhen.
\yr 2009
\vol 43
\issue 3
\pages 65--88
\mathnet{http://mi.mathnet.ru/faa2960}
\crossref{https://doi.org/10.4213/faa2960}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2583960}
\zmath{https://zbmath.org/?q=an:1271.47072}
\elib{https://elibrary.ru/item.asp?id=15495668}
\transl
\jour Funct. Anal. Appl.
\yr 2009
\vol 43
\issue 3
\pages 217--235
\crossref{https://doi.org/10.1007/s10688-009-0029-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269897000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-71449121733}
Linking options:
  • https://www.mathnet.ru/eng/faa2960
  • https://doi.org/10.4213/faa2960
  • https://www.mathnet.ru/eng/faa/v43/i3/p65
  • This publication is cited in the following 29 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:781
    Full-text PDF :256
    References:98
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024