Abstract:
We find a new infinite sequence of invariant manifolds for the Sawada–Kotera equation, in addition to the known two sequences of its symmetries and conservation laws. The elements of these three sequences are related cyclically by recursion relations similar to the Lenard formula for the KdV equation. For any n>0, there are two invariant manifolds of order 2n, which allows one to construct two n-soliton solutions of the Sawada–Kotera equation.
\Bibitem{Bag09}
\by Yu.~Yu.~Bagderina
\paper Three Series of Invariant Manifolds of the Sawada--Kotera Equation
\jour Funktsional. Anal. i Prilozhen.
\yr 2009
\vol 43
\issue 4
\pages 87--90
\mathnet{http://mi.mathnet.ru/faa2954}
\crossref{https://doi.org/10.4213/faa2954}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2596656}
\zmath{https://zbmath.org/?q=an:1185.35216}
\transl
\jour Funct. Anal. Appl.
\yr 2009
\vol 43
\issue 4
\pages 312--315
\crossref{https://doi.org/10.1007/s10688-009-0038-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275375400006}
Linking options:
https://www.mathnet.ru/eng/faa2954
https://doi.org/10.4213/faa2954
https://www.mathnet.ru/eng/faa/v43/i4/p87
This publication is cited in the following 5 articles:
Zhong Wang, “Spectral stability of multi-solitons for generalized Hamiltonian system I: The Caudrey–Dodd–Gibbon–Sawada–Kotera equation”, Physica D: Nonlinear Phenomena, 444 (2023), 133610
A. V. Domrin, M. A. Shumkin, B. I. Suleimanov, “Meromorphy of solutions for a wide class of ordinary differential equations of Painlevé type”, Journal of Mathematical Physics, 63:2 (2022)
Li Yu., Chen Y., “The Special Class of Second Integrals of the Kdv Equation”, Commun. Nonlinear Sci. Numer. Simul., 70 (2019), 193–202
Kunzinger M., Popovych R.O., “Generalized conditional symmetries of evolution equations”, J. Math. Anal. Appl., 379:1 (2011), 444–460
Bagderina Yu.Yu., “Invariants of a family of third-order ordinary differential equations”, J. Phys. A, 42:8 (2009), 085204, 21 pp.