|
Hyperbolic Chevalley Groups on $\mathbb{C}^2$
O. V. Schwarzmanab a Independent University of Moscow
b State University – Higher School of Economics
Abstract:
Let $\Gamma\subset U(1,1)$ be the subgroup generated by the complex reflections. Suppose that $\Gamma$ acts discretely on the domain $K=\{(z_1,z_2)\in\mathbb{C}^2\mid |z_1|^2-|z_2|^2<0\}$ and that the projective group $P\Gamma$ acts on the unit disk $B=\{|z_1/z_2|<1\}$ as a Fuchsian group of signature $(n_1,\dots,n_s)$, $s\ge 3$, $n_i\ge 2$. For such groups, we prove a Chevalley type theorem, i.e., find a necessary and sufficient condition for the quotient space $K/\Gamma$ to be isomorphic to $\mathbb{C}^2-\{0\}$.
Keywords:
reflection group, Fuchsian group, quotient space, Chevalley theorem.
Received: 13.02.2008
Citation:
O. V. Schwarzman, “Hyperbolic Chevalley Groups on $\mathbb{C}^2$”, Funktsional. Anal. i Prilozhen., 43:2 (2009), 64–72; Funct. Anal. Appl., 43:2 (2009), 132–139
Linking options:
https://www.mathnet.ru/eng/faa2952https://doi.org/10.4213/faa2952 https://www.mathnet.ru/eng/faa/v43/i2/p64
|
|