Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2009, Volume 43, Issue 2, Pages 47–63
DOI: https://doi.org/10.4213/faa2949
(Mi faa2949)
 

This article is cited in 2 scientific papers (total in 2 papers)

Commutativity of the Centralizer of a Subalgebra in a Universal Enveloping Algebra

A. A. Zorin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (281 kB) Citations (2)
References:
Abstract: Let $G$ be a reductive algebraic group over an algebraically closed field of characteristic zero, and let $\mathfrak{h}$ be an algebraic subalgebra of the tangent Lie algebra $\mathfrak{g}$ of $G$. We find all subalgebras $\mathfrak h$ that have no nontrivial characters and whose centralizers $\mathfrak{U}(\mathfrak{g})^\mathfrak{h}$ and $P(\mathfrak{g})^{\mathfrak{h}}$ in the universal enveloping algebra $\mathfrak{U}\mathfrak{g})$ and in the associated graded algebra $P(\mathfrak{g})$, respectively, are commutative. For all these subalgebras, we prove that ${\mathfrak U}\mathfrak{(g)}^{\mathfrak h}=\mathfrak{U(h)^h}\otimes\mathfrak{U(g)^g}$ and $P\mathfrak{(g)}^{\mathfrak h}=P\mathfrak{(h)^h}\otimes P\mathfrak{(g)^g}$. Furthermore, we obtain a criterion for the commutativity of $\mathfrak{U(g)^h}$ in terms of representation theory.
Keywords: universal enveloping algebra, Poisson algebra, centralizer of algebra, coisotropic action.
Received: 13.07.2007
English version:
Functional Analysis and Its Applications, 2009, Volume 43, Issue 2, Pages 119–131
DOI: https://doi.org/10.1007/s10688-009-0016-z
Bibliographic databases:
Document Type: Article
UDC: 512.816
Language: Russian
Citation: A. A. Zorin, “Commutativity of the Centralizer of a Subalgebra in a Universal Enveloping Algebra”, Funktsional. Anal. i Prilozhen., 43:2 (2009), 47–63; Funct. Anal. Appl., 43:2 (2009), 119–131
Citation in format AMSBIB
\Bibitem{Zor09}
\by A.~A.~Zorin
\paper Commutativity of the Centralizer of a Subalgebra in a~Universal Enveloping Algebra
\jour Funktsional. Anal. i Prilozhen.
\yr 2009
\vol 43
\issue 2
\pages 47--63
\mathnet{http://mi.mathnet.ru/faa2949}
\crossref{https://doi.org/10.4213/faa2949}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2542274}
\zmath{https://zbmath.org/?q=an:1271.17006}
\elib{https://elibrary.ru/item.asp?id=13616284}
\transl
\jour Funct. Anal. Appl.
\yr 2009
\vol 43
\issue 2
\pages 119--131
\crossref{https://doi.org/10.1007/s10688-009-0016-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266947300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-68049106371}
Linking options:
  • https://www.mathnet.ru/eng/faa2949
  • https://doi.org/10.4213/faa2949
  • https://www.mathnet.ru/eng/faa/v43/i2/p47
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024