Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2009, Volume 43, Issue 2, Pages 79–83
DOI: https://doi.org/10.4213/faa2948
(Mi faa2948)
 

This article is cited in 3 scientific papers (total in 3 papers)

Brief communications

A Realization Theorem in the Context of the Schur–Szegő Composition

V. P. Kostov

Université de Nice Sophia Antipolis
Full-text PDF (192 kB) Citations (3)
References:
Abstract: Every real polynomial of degree $n$ in one variable with root $-1$ can be represented as the Schur–Szegő composition of $n-1$ polynomials of the form $(x+1)^{n-1}(x+a_i)$, where the numbers $a_i$ are uniquely determined up to permutation. Some $a_i$ are real, and the others form complex conjugate pairs. In this note, we show that for each pair $(\rho,r)$, where $0\le \rho,r\le [n/2]$, there exists a polynomial with exactly $\rho$ pairs of complex conjugate roots and exactly $r$ complex conjugate pairs in the corresponding set of numbers $a_i$.
Keywords: polynomial, Schur–Szegő composition.
Received: 26.10.2007
English version:
Functional Analysis and Its Applications, 2009, Volume 43, Issue 2, Pages 147–150
DOI: https://doi.org/10.1007/s10688-009-0020-3
Bibliographic databases:
Document Type: Article
UDC: 512.622
Language: Russian
Citation: V. P. Kostov, “A Realization Theorem in the Context of the Schur–Szegő Composition”, Funktsional. Anal. i Prilozhen., 43:2 (2009), 79–83; Funct. Anal. Appl., 43:2 (2009), 147–150
Citation in format AMSBIB
\Bibitem{Kos09}
\by V.~P.~Kostov
\paper A Realization Theorem in the Context of the Schur--Szeg\H{o} Composition
\jour Funktsional. Anal. i Prilozhen.
\yr 2009
\vol 43
\issue 2
\pages 79--83
\mathnet{http://mi.mathnet.ru/faa2948}
\crossref{https://doi.org/10.4213/faa2948}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2542278}
\zmath{https://zbmath.org/?q=an:1271.26006}
\transl
\jour Funct. Anal. Appl.
\yr 2009
\vol 43
\issue 2
\pages 147--150
\crossref{https://doi.org/10.1007/s10688-009-0020-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266947300008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67949097347}
Linking options:
  • https://www.mathnet.ru/eng/faa2948
  • https://doi.org/10.4213/faa2948
  • https://www.mathnet.ru/eng/faa/v43/i2/p79
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:331
    Full-text PDF :102
    References:34
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024