|
This article is cited in 3 scientific papers (total in 3 papers)
Horospherical Transform on Real Symmetric Varieties: Kernel and Cokernel
B. Krötz Max-Planck-Institut für Mathematik
Abstract:
In this paper, we define a horospherical transform for a semisimple symmetric space $Y$. A natural double fibration is used to assign a more geometrical space $\Xi$ of horospheres to $Y$. The horospherical transform relates certain integrable analytic functions on $Y$ to analytic functions on $\Xi$ by fiber integration. We determine the kernel of the horospherical transform and establish that the transform is injective on functions belonging to the most continuous spectrum of $Y$.
Keywords:
semisimple symmetric space, horospherical transform, Fourier transform, Plancherel theorem.
Received: 14.05.2007
Citation:
B. Krötz, “Horospherical Transform on Real Symmetric Varieties: Kernel and Cokernel”, Funktsional. Anal. i Prilozhen., 43:1 (2009), 37–54; Funct. Anal. Appl., 43:1 (2009), 30–43
Linking options:
https://www.mathnet.ru/eng/faa2943https://doi.org/10.4213/faa2943 https://www.mathnet.ru/eng/faa/v43/i1/p37
|
|