Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2009, Volume 43, Issue 1, Pages 22–36
DOI: https://doi.org/10.4213/faa2940
(Mi faa2940)
 

This article is cited in 6 scientific papers (total in 6 papers)

Equivariant Cohomology and Localization for Lie Algebroids

U. Bruzzoab, L. Cirioab, P. Rossib, V. N. Rubtsovcd

a Scuola Internazionale Superiore di Studi Avanzati, Trieste
b Istituto Nazionale di Fisica Nucleare, Sezione di Trieste
c Institute for Theoretical and Experimental Physics, Moscow
d Université d'Angers, Département de Mathématiques
Full-text PDF (285 kB) Citations (6)
References:
Abstract: Let $M$ be a manifold carrying the action of a Lie group $G$, and let $A$ be a Lie algebroid on $M$ equipped with a compatible infinitesimal $G$-action. Using these data, we construct an equivariant cohomology of $A$ and prove a related localization formula for the case of compact $G$. By way of application, we prove an analog of the Bott formula.
Keywords: Lie algebroid, equivariant cohomology, localization formula.
Received: 17.01.2006
Revised: 28.06.2008
English version:
Functional Analysis and Its Applications, 2009, Volume 43, Issue 1, Pages 18–29
DOI: https://doi.org/10.1007/s10688-009-0003-4
Bibliographic databases:
Document Type: Article
UDC: 514.762.32
Language: Russian
Citation: U. Bruzzo, L. Cirio, P. Rossi, V. N. Rubtsov, “Equivariant Cohomology and Localization for Lie Algebroids”, Funktsional. Anal. i Prilozhen., 43:1 (2009), 22–36; Funct. Anal. Appl., 43:1 (2009), 18–29
Citation in format AMSBIB
\Bibitem{BruCirRos09}
\by U.~Bruzzo, L.~Cirio, P.~Rossi, V.~N.~Rubtsov
\paper Equivariant Cohomology and Localization for Lie Algebroids
\jour Funktsional. Anal. i Prilozhen.
\yr 2009
\vol 43
\issue 1
\pages 22--36
\mathnet{http://mi.mathnet.ru/faa2940}
\crossref{https://doi.org/10.4213/faa2940}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2503863}
\zmath{https://zbmath.org/?q=an:1271.53073}
\transl
\jour Funct. Anal. Appl.
\yr 2009
\vol 43
\issue 1
\pages 18--29
\crossref{https://doi.org/10.1007/s10688-009-0003-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000264264100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-62749175710}
Linking options:
  • https://www.mathnet.ru/eng/faa2940
  • https://doi.org/10.4213/faa2940
  • https://www.mathnet.ru/eng/faa/v43/i1/p22
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024