Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2000, Volume 34, Issue 2, Pages 43–49
DOI: https://doi.org/10.4213/faa294
(Mi faa294)
 

This article is cited in 13 scientific papers (total in 13 papers)

Sails and Hilbert Bases

J.-O. Moussafir

Université Paris-Dauphine
References:
Abstract: A Klein polyhedron is the convex hull of the nonzero integral points of a simplicial cone $C\subset\mathbb{R}^n$. There are relationships between these polyhedra and the Hilbert bases of monoids of integral points contained in a simplicial cone.
In the two-dimensional case, the set of integral points lying on the boundary of a Klein polyhedron contains a Hilbert base of the corresponding monoid. In general, this is not the case if the dimension is greater than or equal to three. However, in the three-dimensional case, we give a characterization of the polyhedra that still have this property. We give an example of such a sail and show that our criterion does not hold if the dimension is four.
Received: 16.09.1998
English version:
Functional Analysis and Its Applications, 2000, Volume 34, Issue 2, Pages 114–118
DOI: https://doi.org/10.1007/BF02482424
Bibliographic databases:
Document Type: Article
UDC: 512.7+514.17
Language: Russian
Citation: J. Moussafir, “Sails and Hilbert Bases”, Funktsional. Anal. i Prilozhen., 34:2 (2000), 43–49; Funct. Anal. Appl., 34:2 (2000), 114–118
Citation in format AMSBIB
\Bibitem{Mou00}
\by J.~Moussafir
\paper Sails and Hilbert Bases
\jour Funktsional. Anal. i Prilozhen.
\yr 2000
\vol 34
\issue 2
\pages 43--49
\mathnet{http://mi.mathnet.ru/faa294}
\crossref{https://doi.org/10.4213/faa294}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1773843}
\zmath{https://zbmath.org/?q=an:1014.52002}
\transl
\jour Funct. Anal. Appl.
\yr 2000
\vol 34
\issue 2
\pages 114--118
\crossref{https://doi.org/10.1007/BF02482424}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000088391800005}
Linking options:
  • https://www.mathnet.ru/eng/faa294
  • https://doi.org/10.4213/faa294
  • https://www.mathnet.ru/eng/faa/v34/i2/p43
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:460
    Full-text PDF :238
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024