Loading [MathJax]/jax/output/SVG/config.js
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2009, Volume 43, Issue 1, Pages 91–93
DOI: https://doi.org/10.4213/faa2937
(Mi faa2937)
 

This article is cited in 10 scientific papers (total in 10 papers)

Brief communications

Pointwise van der Corput Lemma for Functions of Several Variables

M. V. Ruzhanskii

Imperial College London
References:
Abstract: A multidimensional version of the well-known van der Corput lemma is presented. A class of phase functions is described for which the corresponding oscillatory integrals satisfy a multidimensional decay estimate. The obtained estimates are uniform with respect to parameters on which the phases and amplitudes may depend.
Keywords: van der Corput lemma, oscillatory integral, asymptotic estimate.
Received: 13.04.2007
English version:
Functional Analysis and Its Applications, 2009, Volume 43, Issue 1, Pages 75–77
DOI: https://doi.org/10.1007/s10688-009-0010-5
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: M. V. Ruzhanskii, “Pointwise van der Corput Lemma for Functions of Several Variables”, Funktsional. Anal. i Prilozhen., 43:1 (2009), 91–93; Funct. Anal. Appl., 43:1 (2009), 75–77
Citation in format AMSBIB
\Bibitem{Ruz09}
\by M.~V.~Ruzhanskii
\paper Pointwise van der Corput Lemma for Functions of Several Variables
\jour Funktsional. Anal. i Prilozhen.
\yr 2009
\vol 43
\issue 1
\pages 91--93
\mathnet{http://mi.mathnet.ru/faa2937}
\crossref{https://doi.org/10.4213/faa2937}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2503870}
\zmath{https://zbmath.org/?q=an:1271.42026}
\transl
\jour Funct. Anal. Appl.
\yr 2009
\vol 43
\issue 1
\pages 75--77
\crossref{https://doi.org/10.1007/s10688-009-0010-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000264264100010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-62749158253}
Linking options:
  • https://www.mathnet.ru/eng/faa2937
  • https://doi.org/10.4213/faa2937
  • https://www.mathnet.ru/eng/faa/v43/i1/p91
  • This publication is cited in the following 10 articles:
    1. Akbar R. Safarov, Ulugbek A. Ibragimov, “Oscillatory integrals for Mittag–Leffler functions”, Zhurn. SFU. Ser. Matem. i fiz., 17:4 (2024), 488–496  mathnet
    2. Isroil A. Ikromov, Michael Ruzhansky, Akbar R. Safarov, “Oscillatory integrals for Mittag-Leffler functions with two variables”, Comptes Rendus. Mathématique, 362:G7 (2024), 789  crossref
    3. Michael Ruzhansky, Akbar R. Safarov, Gafurjan A. Khasanov, “Uniform estimates for oscillatory integrals with homogeneous polynomial phases of degree 4”, Anal.Math.Phys., 12:6 (2022)  crossref
    4. Jinping Zhuge, “Homogenization and boundary layers in domains of finite type”, Communications in Partial Differential Equations, 43:4 (2018), 549  crossref
    5. Tokio Matsuyama, Michael Ruzhansky, “Scattering for strictly hyperbolic systems with time‐dependent coefficients”, Mathematische Nachrichten, 286:11-12 (2013), 1191  crossref
    6. Jens Wirth, Springer Proceedings in Mathematics & Statistics, 44, Progress in Partial Differential Equations, 2013, 367  crossref
    7. Ruzhansky M., “Multidimensional decay in the van der Corput lemma”, Studia Math., 208:1 (2012), 1–10  crossref  mathscinet  zmath  isi
    8. Ruzhansky M., Wirth J., “Dispersive estimates for hyperbolic systems with time-dependent coefficients”, J. Differential Equations, 251:4-5 (2011), 941–969  crossref  mathscinet  zmath  adsnasa  isi
    9. Matsuyama T., Ruzhansky M., “Asymptotic integration and dispersion for hyperbolic equations”, Adv. Differential Equations, 15:7-8 (2010), 721–756  mathscinet  zmath  isi
    10. G. M. Gubreev, A. A. Tarasenko, “Spectral decomposition of model operators in de Branges spaces”, Sb. Math., 201:11 (2010), 1599–1634  mathnet  mathnet  crossref  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:674
    Full-text PDF :291
    References:115
    First page:5
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025