|
This article is cited in 2 scientific papers (total in 2 papers)
Brief communications
The Limit Absorption Principle and Homogenization Procedure for Periodic Elliptic Operators
M. S. Birman, T. A. Suslina St. Petersburg State University, Faculty of Physics
Abstract:
For a periodic matrix elliptic operator $\mathcal{A}_\varepsilon$ with (${\mathbf x}/\varepsilon$-dependent) rapidly oscillating coefficients, a certain analog of the limit absorption principle is proved. It is shown that the bordered resolvent $\langle{\mathbf x}\rangle^{-1/2-\delta}(\mathcal{A}_\varepsilon-(\eta\pm i\varepsilon^\sigma)I)^{-1}\langle{\mathbf x}\rangle^{-1/2-\delta}$ has a limit in the operator norm in $L_2$ as $\varepsilon\to 0$ provided that $\eta>0$, $\delta>0$, and $0<\sigma<1/2$.
Keywords:
periodic differential operators, homogenization, effective operator, limit absorption principle.
Received: 01.08.2008
Citation:
M. S. Birman, T. A. Suslina, “The Limit Absorption Principle and Homogenization Procedure for Periodic Elliptic Operators”, Funktsional. Anal. i Prilozhen., 42:4 (2008), 105–108; Funct. Anal. Appl., 42:4 (2008), 336–339
Linking options:
https://www.mathnet.ru/eng/faa2930https://doi.org/10.4213/faa2930 https://www.mathnet.ru/eng/faa/v42/i4/p105
|
Statistics & downloads: |
Abstract page: | 638 | Full-text PDF : | 202 | References: | 79 | First page: | 27 |
|