Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2008, Volume 42, Issue 4, Pages 105–108
DOI: https://doi.org/10.4213/faa2930
(Mi faa2930)
 

This article is cited in 2 scientific papers (total in 2 papers)

Brief communications

The Limit Absorption Principle and Homogenization Procedure for Periodic Elliptic Operators

M. S. Birman, T. A. Suslina

St. Petersburg State University, Faculty of Physics
Full-text PDF (142 kB) Citations (2)
References:
Abstract: For a periodic matrix elliptic operator $\mathcal{A}_\varepsilon$ with (${\mathbf x}/\varepsilon$-dependent) rapidly oscillating coefficients, a certain analog of the limit absorption principle is proved. It is shown that the bordered resolvent $\langle{\mathbf x}\rangle^{-1/2-\delta}(\mathcal{A}_\varepsilon-(\eta\pm i\varepsilon^\sigma)I)^{-1}\langle{\mathbf x}\rangle^{-1/2-\delta}$ has a limit in the operator norm in $L_2$ as $\varepsilon\to 0$ provided that $\eta>0$, $\delta>0$, and $0<\sigma<1/2$.
Keywords: periodic differential operators, homogenization, effective operator, limit absorption principle.
Received: 01.08.2008
English version:
Functional Analysis and Its Applications, 2008, Volume 42, Issue 4, Pages 336–339
DOI: https://doi.org/10.1007/s10688-008-0047-x
Bibliographic databases:
Document Type: Article
UDC: 517.956
Language: Russian
Citation: M. S. Birman, T. A. Suslina, “The Limit Absorption Principle and Homogenization Procedure for Periodic Elliptic Operators”, Funktsional. Anal. i Prilozhen., 42:4 (2008), 105–108; Funct. Anal. Appl., 42:4 (2008), 336–339
Citation in format AMSBIB
\Bibitem{BirSus08}
\by M.~S.~Birman, T.~A.~Suslina
\paper The Limit Absorption Principle and Homogenization Procedure for Periodic Elliptic Operators
\jour Funktsional. Anal. i Prilozhen.
\yr 2008
\vol 42
\issue 4
\pages 105--108
\mathnet{http://mi.mathnet.ru/faa2930}
\crossref{https://doi.org/10.4213/faa2930}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2492431}
\zmath{https://zbmath.org/?q=an:1177.35027}
\transl
\jour Funct. Anal. Appl.
\yr 2008
\vol 42
\issue 4
\pages 336--339
\crossref{https://doi.org/10.1007/s10688-008-0047-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262490500009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-58449089556}
Linking options:
  • https://www.mathnet.ru/eng/faa2930
  • https://doi.org/10.4213/faa2930
  • https://www.mathnet.ru/eng/faa/v42/i4/p105
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:638
    Full-text PDF :202
    References:79
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024