Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2008, Volume 42, Issue 4, Pages 37–49
DOI: https://doi.org/10.4213/faa2929
(Mi faa2929)
 

This article is cited in 5 scientific papers (total in 6 papers)

Integral Models of Unitary Representations of Current Groups with Values in Semidirect Products

A. M. Vershika, M. I. Graevb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Scientific Research Institute for System Studies of RAS
Full-text PDF (250 kB) Citations (6)
References:
Abstract: We describe a general construction of irreducible unitary representations of the group of currents with values in the semidirect product of a locally compact subgroup $P_0$ by a one-parameter group $\mathbb{R}^*_+=\{r:r>0\}$ of automorphisms of $P_0$. This construction is determined by a faithful unitary representation of $P_0$ (canonical representation) whose images under the action of the group of automorphisms tend to the identity representation as $r\to 0$. We apply this construction to the current groups of maximal parabolic subgroups in the groups of motions of the $n$-dimensional real and complex Lobachevsky spaces. The obtained representations of the current groups of parabolic subgroups uniquely extend to the groups of currents with values in the groups $O(n,1)$ and $U(n,1)$. This gives a new description of the representations, constructed in the 1970s and realized in the Fock space, of the current groups of the latter groups. The key role in our construction is played by the so-called special representation of the parabolic subgroup $P$ and a remarkable $\sigma$-finite measure (Lebesgue measure) $\mathcal L$ on the space of distributions.
Keywords: current group, integral model, Fock representation, special representation, infinite-dimensional Lebesgue measure.
Received: 11.08.2008
English version:
Functional Analysis and Its Applications, 2008, Volume 42, Issue 4, Pages 279–289
DOI: https://doi.org/10.1007/s10688-008-0041-3
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: A. M. Vershik, M. I. Graev, “Integral Models of Unitary Representations of Current Groups with Values in Semidirect Products”, Funktsional. Anal. i Prilozhen., 42:4 (2008), 37–49; Funct. Anal. Appl., 42:4 (2008), 279–289
Citation in format AMSBIB
\Bibitem{VerGra08}
\by A.~M.~Vershik, M.~I.~Graev
\paper Integral Models of Unitary Representations of Current Groups with Values in Semidirect Products
\jour Funktsional. Anal. i Prilozhen.
\yr 2008
\vol 42
\issue 4
\pages 37--49
\mathnet{http://mi.mathnet.ru/faa2929}
\crossref{https://doi.org/10.4213/faa2929}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2492425}
\zmath{https://zbmath.org/?q=an:1162.22020}
\elib{https://elibrary.ru/item.asp?id=11922160}
\transl
\jour Funct. Anal. Appl.
\yr 2008
\vol 42
\issue 4
\pages 279--289
\crossref{https://doi.org/10.1007/s10688-008-0041-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262490500003}
\elib{https://elibrary.ru/item.asp?id=13572754}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-58449115510}
Linking options:
  • https://www.mathnet.ru/eng/faa2929
  • https://doi.org/10.4213/faa2929
  • https://www.mathnet.ru/eng/faa/v42/i4/p37
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024