Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2008, Volume 42, Issue 4, Pages 72–82
DOI: https://doi.org/10.4213/faa2928
(Mi faa2928)
 

This article is cited in 2 scientific papers (total in 2 papers)

Family Algebras and Generalized Exponents for Polyvector Representations of Simple Lie Algebras of Type $B_n$

A. A. Kirillovab

a Institute for Information Transmission Problems, Russian Academy of Sciences
b University of Pennsylvania
Full-text PDF (219 kB) Citations (2)
References:
Abstract: We give an explicit formula for the exterior powers $\wedge^k\pi_1$ of the defining representation $\pi_1$ of the simple Lie algebra $\mathfrak{so}(2n+1,\mathbb{C})$. We use the technique of family algebras. All representations in question are children of the spinor representation $\sigma$ of $\mathfrak{so}(2n+1,\mathbb{C})$. We also give a survey of main results on family algebras.
Keywords: family algebra, generalized exponent, representation of Lie algebra, spinor representation.
Received: 26.06.2008
English version:
Functional Analysis and Its Applications, 2008, Volume 42, Issue 4, Pages 308–316
DOI: https://doi.org/10.1007/s10688-008-0044-0
Bibliographic databases:
Document Type: Article
UDC: 512.815.1
Language: Russian
Citation: A. A. Kirillov, “Family Algebras and Generalized Exponents for Polyvector Representations of Simple Lie Algebras of Type $B_n$”, Funktsional. Anal. i Prilozhen., 42:4 (2008), 72–82; Funct. Anal. Appl., 42:4 (2008), 308–316
Citation in format AMSBIB
\Bibitem{Kir08}
\by A.~A.~Kirillov
\paper Family Algebras and Generalized Exponents for Polyvector Representations of Simple Lie Algebras of Type~$B_n$
\jour Funktsional. Anal. i Prilozhen.
\yr 2008
\vol 42
\issue 4
\pages 72--82
\mathnet{http://mi.mathnet.ru/faa2928}
\crossref{https://doi.org/10.4213/faa2928}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2492428}
\zmath{https://zbmath.org/?q=an:05519892}
\transl
\jour Funct. Anal. Appl.
\yr 2008
\vol 42
\issue 4
\pages 308--316
\crossref{https://doi.org/10.1007/s10688-008-0044-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262490500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-58449124156}
Linking options:
  • https://www.mathnet.ru/eng/faa2928
  • https://doi.org/10.4213/faa2928
  • https://www.mathnet.ru/eng/faa/v42/i4/p72
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024