|
This article is cited in 1 scientific paper (total in 1 paper)
Brief communications
Quaternion Normed Space with Isometry Group $\mathbb{Z}_2$
R. S. Ismagilova, Yu. I. Lyubichb a N. E. Bauman Moscow State Technical University
b Technion – Israel Institute of Technology
Abstract:
In a finite-dimensional linear space over the quaternion field, we construct a norm with the following property. Any linear isometry is one of the two transformations $x\mapsto x$ and $x\mapsto-x$.
Keywords:
quaternion normed space, isometry.
Received: 27.09.2006
Citation:
R. S. Ismagilov, Yu. I. Lyubich, “Quaternion Normed Space with Isometry Group $\mathbb{Z}_2$”, Funktsional. Anal. i Prilozhen., 42:3 (2008), 90–92; Funct. Anal. Appl., 42:3 (2008), 239–241
Linking options:
https://www.mathnet.ru/eng/faa2917https://doi.org/10.4213/faa2917 https://www.mathnet.ru/eng/faa/v42/i3/p90
|
Statistics & downloads: |
Abstract page: | 463 | Full-text PDF : | 207 | References: | 57 | First page: | 9 |
|