Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2008, Volume 42, Issue 3, Pages 75–77
DOI: https://doi.org/10.4213/faa2915
(Mi faa2915)
 

This article is cited in 6 scientific papers (total in 6 papers)

Brief communications

On the Measure with Maximal Entropy for the Teichmüller Flow on the Moduli Space of Abelian Differentials

A. I. Bufetova, B. M. Gurevichbc

a Rice University, Houston
b M. V. Lomonosov Moscow State University
c A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
Full-text PDF (149 kB) Citations (6)
References:
Abstract: The Teichmüller flow $g_t$ on the moduli space of Abelian differentials with zeros of given orders on a Riemann surface of a given genus is considered. This flow is known to preserve a finite absolutely continuous measure and is ergodic on every connected component $\mathcal H$ of the moduli space. The main result of the paper is that $\mu/\mu(\mathcal H)$ is the unique measure with maximal entropy for the restriction of $g_t$ to $\mathcal H$. The proof is based on the symbolic representation of $g_t$.
Keywords: moduli space, Teichmüller flow, suspension flow, topological Bernoulli shift, topological Markov shift, Markov–Bernoulli reduction.
Received: 29.01.2007
English version:
Functional Analysis and Its Applications, 2008, Volume 42, Issue 3, Pages 224–226
DOI: https://doi.org/10.1007/s10688-008-0032-4
Bibliographic databases:
Document Type: Article
UDC: 517.545+517.938+517.987
Language: Russian
Citation: A. I. Bufetov, B. M. Gurevich, “On the Measure with Maximal Entropy for the Teichmüller Flow on the Moduli Space of Abelian Differentials”, Funktsional. Anal. i Prilozhen., 42:3 (2008), 75–77; Funct. Anal. Appl., 42:3 (2008), 224–226
Citation in format AMSBIB
\Bibitem{BufGur08}
\by A.~I.~Bufetov, B.~M.~Gurevich
\paper On the Measure with Maximal Entropy for the Teichm\"uller Flow on the Moduli Space of Abelian Differentials
\jour Funktsional. Anal. i Prilozhen.
\yr 2008
\vol 42
\issue 3
\pages 75--77
\mathnet{http://mi.mathnet.ru/faa2915}
\crossref{https://doi.org/10.4213/faa2915}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2454479}
\zmath{https://zbmath.org/?q=an:1159.37012}
\transl
\jour Funct. Anal. Appl.
\yr 2008
\vol 42
\issue 3
\pages 224--226
\crossref{https://doi.org/10.1007/s10688-008-0032-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000259070800008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-51449124698}
Linking options:
  • https://www.mathnet.ru/eng/faa2915
  • https://doi.org/10.4213/faa2915
  • https://www.mathnet.ru/eng/faa/v42/i3/p75
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025