Abstract:
We study general boundary value problems with nondegenerate characteristic determinant Δ(λ) for the Sturm–Liouville equation on the interval [0,1]. Necessary and sufficient conditions for the completeness of root vectors are obtained in terms of the potential. In particular, it is shown that if Δ(λ)≠const, q(⋅)∈Ck[0,1] for some k⩾0, and q(k)(0)≠(−1)kq(k)(1), then the system of root vectors is complete and minimal in Lp[0,1] for p∈[1,∞).
Keywords:
Sturm–Liouville equation, completeness of the system of root vectors, nondegenerate boundary conditions.
Citation:
M. M. Malamud, “On the Completeness of the System of Root Vectors of the Sturm–Liouville Operator with General Boundary Conditions”, Funktsional. Anal. i Prilozhen., 42:3 (2008), 45–52; Funct. Anal. Appl., 42:3 (2008), 198–204
\Bibitem{Mal08}
\by M.~M.~Malamud
\paper On the Completeness of the System of Root Vectors of the Sturm--Liouville Operator with General Boundary Conditions
\jour Funktsional. Anal. i Prilozhen.
\yr 2008
\vol 42
\issue 3
\pages 45--52
\mathnet{http://mi.mathnet.ru/faa2911}
\crossref{https://doi.org/10.4213/faa2911}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2454475}
\zmath{https://zbmath.org/?q=an:1167.34393}
\transl
\jour Funct. Anal. Appl.
\yr 2008
\vol 42
\issue 3
\pages 198--204
\crossref{https://doi.org/10.1007/s10688-008-0028-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000259070800004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-51549119058}
Linking options:
https://www.mathnet.ru/eng/faa2911
https://doi.org/10.4213/faa2911
https://www.mathnet.ru/eng/faa/v42/i3/p45
This publication is cited in the following 29 articles: