Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2008, Volume 42, Issue 3, Pages 45–52
DOI: https://doi.org/10.4213/faa2911
(Mi faa2911)
 

This article is cited in 29 scientific papers (total in 29 papers)

On the Completeness of the System of Root Vectors of the Sturm–Liouville Operator with General Boundary Conditions

M. M. Malamud

Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences
References:
Abstract: We study general boundary value problems with nondegenerate characteristic determinant Δ(λ)Δ(λ) for the Sturm–Liouville equation on the interval [0,1][0,1]. Necessary and sufficient conditions for the completeness of root vectors are obtained in terms of the potential. In particular, it is shown that if Δ(λ)constΔ(λ)const, q()Ck[0,1]q()Ck[0,1] for some k0, and q(k)(0)(1)kq(k)(1), then the system of root vectors is complete and minimal in Lp[0,1] for p[1,).
Keywords: Sturm–Liouville equation, completeness of the system of root vectors, nondegenerate boundary conditions.
Received: 14.02.2007
English version:
Functional Analysis and Its Applications, 2008, Volume 42, Issue 3, Pages 198–204
DOI: https://doi.org/10.1007/s10688-008-0028-0
Bibliographic databases:
Document Type: Article
UDC: 517.43
Language: Russian
Citation: M. M. Malamud, “On the Completeness of the System of Root Vectors of the Sturm–Liouville Operator with General Boundary Conditions”, Funktsional. Anal. i Prilozhen., 42:3 (2008), 45–52; Funct. Anal. Appl., 42:3 (2008), 198–204
Citation in format AMSBIB
\Bibitem{Mal08}
\by M.~M.~Malamud
\paper On the Completeness of the System of Root Vectors of the Sturm--Liouville Operator with General Boundary Conditions
\jour Funktsional. Anal. i Prilozhen.
\yr 2008
\vol 42
\issue 3
\pages 45--52
\mathnet{http://mi.mathnet.ru/faa2911}
\crossref{https://doi.org/10.4213/faa2911}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2454475}
\zmath{https://zbmath.org/?q=an:1167.34393}
\transl
\jour Funct. Anal. Appl.
\yr 2008
\vol 42
\issue 3
\pages 198--204
\crossref{https://doi.org/10.1007/s10688-008-0028-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000259070800004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-51549119058}
Linking options:
  • https://www.mathnet.ru/eng/faa2911
  • https://doi.org/10.4213/faa2911
  • https://www.mathnet.ru/eng/faa/v42/i3/p45
  • This publication is cited in the following 29 articles:
    1. Anton A. Lunyov, Mark M. Malamud, “On the completeness property of root vector systems for 2 × 2 Dirac type operators with non-regular boundary conditions”, Journal of Mathematical Analysis and Applications, 543:2 (2025), 128949  crossref
    2. A. Lunev, M. Malamud, “On the Asymptotic Expansion of the Characteristic Determinant for a 2 × 2 Dirac Type System”, J Math Sci, 2024  crossref
    3. A. A. Lunev, M. M. Malamud, “Ob asimptoticheskom razlozhenii kharakteristicheskogo opredelitelya dlya $2 \times 2$-sistem tipa Diraka”, Issledovaniya po lineinym operatoram i teorii funktsii. 51, Zap. nauchn. sem. POMI, 527, POMI, SPb., 2023, 94–136  mathnet
    4. Wang Y., “Anh-Version Adaptive Fem For Eigenproblems in System of Second Order Odes: Vector Sturm-Liouville Problems and Free Vibration of Curved Beams”, Eng. Comput., 38:4 (2021), 1807–1830  crossref  isi  scopus
    5. A. S. Makin, “O dvukhtochechnykh kraevykh zadachakh dlya operatorov Shturma—Liuvillya i Diraka”, Materialy Voronezhskoi vesennei matematicheskoi shkoly «Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXX». Voronezh, 3–9 maya 2019 g. Chast 5, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 194, VINITI RAN, M., 2021, 144–154  mathnet  crossref
    6. Akhtyamov A.M., Gasymov T.B., “Degenerated Boundary Conditions of a Sturm-Liouville Problem With a Potential-Distribution”, Azerbaijan J. Math., 11:2 (2021), 98–104  mathscinet  isi
    7. Akhtyamov A.M., “Nonexistence of Degenerate Boundary Conditions in a Spectral Problem”, Differ. Equ., 57:1 (2021), 117–121  crossref  mathscinet  isi
    8. Sadovnichii V.A., Sultanaev Ya.T., Akhtyamov A.M., “Degenerate Boundary Conditions For the Diffusion Operator on a Geometric Graph”, Differ. Equ., 56:5 (2020), 595–604  crossref  mathscinet  zmath  isi
    9. Sadovnichii V.A., Sultanaev Ya.T., Akhtyamov A.M., “Degenerate Boundary Conditions For the Sturm-Liouville Problem on a Geometric Graph”, Differ. Equ., 55:4 (2019), 500–509  crossref  mathscinet  isi
    10. Sadovnichii V.A., Sultanaev Ya.T., Akhtyamov A.M., “Degenerate Boundary Conditions on a Geometric Graph”, Dokl. Math., 99:2 (2019), 167–170  crossref  mathscinet  isi
    11. Agibalova A.V., Lunyov A.A., Malamud M.M., Oridoroga L.L., “Completeness Property of One-Dimensional Perturbations of Normal and Spectral Operators Generated By First Order Systems”, Integr. Equ. Oper. Theory, 91:4 (2019), UNSP 37  crossref  mathscinet  isi  scopus
    12. A. M. Akhtyamov, “Survey of studies on degenerate boundary conditions and finite spectrum”, Proceedings of the Mavlyutov Institute of Mechanics, 14:3 (2019), 184–291  mathnet  mathnet  crossref
    13. Makin A., “Two-Point Boundary-Value Problems With Nonclassical Asymptotics on the Spectrum”, Electron. J. Differ. Equ., 2018, 95  mathscinet  zmath  isi
    14. A. M. Akhtyamov, “Degenerate boundary conditions for a third-order differential equation”, Differ. Equ., 54:4 (2018), 419–426  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
    15. Makin A.S., “Basis Properties of the System of Root Functions of the Sturm-Liouville Operator With Degenerate Boundary Conditions: i”, Differ. Equ., 54:10 (2018), 1338–1353  crossref  mathscinet  isi
    16. Makin A.S., Moiseev T.E., “Irregular Boundary Value Problem For the Sturm-Liouville Operator”, Differ. Equ., 53:8 (2017), 1021–1028  crossref  mathscinet  zmath  isi
    17. Makin A.S., “On the absence of the basis property for the root function system of the Sturm–Liouville operator with degenerate boundary conditions”, Dokl. Math., 93:2 (2016), 220–222  crossref  mathscinet  zmath  isi  elib  scopus
    18. Cemile Nur, O. A. Veliev, “On the basis property of the root functions of Sturm–Liouville operators with general regular boundary conditions”, Mosc. Math. J., 15:3 (2015), 511–526  mathnet  crossref  mathscinet
    19. Lunyov A.A., Malamud M.M., “on the Completeness and Riesz Basis Property of Root Subspaces of Boundary Value Problems For First Order Systems and Applications”, J. Spectr. Theory, 5:1 (2015), 17–70  crossref  mathscinet  zmath  isi
    20. Makin A.S., “On the Completeness of the System of Root Functions of the Sturm-Liouville Operator With Degenerate Boundary Conditions”, Differ. Equ., 50:6 (2014), 835–839  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:840
    Full-text PDF :356
    References:100
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025